-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmaml.py
392 lines (322 loc) · 15.8 KB
/
maml.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
import random
import numpy as np
import os
import argparse
SEED = 1000
random.seed(SEED)
np.random.seed(SEED)
tf.random.set_seed(SEED)
from dataloader import DataLoader
NUM_CONV_LAYERS = 4
SAVE_INTERVAL = 100
LOG_INTERVAL = 1
VAL_INTERVAL = 50
NUM_TRAIN_TASKS = 20
NUM_TEST_TASKS = 100
NUM_ITERATIONS = 1500
class MAML:
def __init__(self, num_classes, num_inner_steps, inner_lr, outer_lr,
n_support, n_query, log_dir:str='log'):
"""Initializes First-Order Model-Agnostic Meta-Learning.
Model architecture from https://arxiv.org/abs/1703.03400
The model consists of four convolutional blocks followed by a linear
head layer. Each convolutional block comprises a convolution layer, a
batch normalization layer, and a ReLU activation.
Args:
num_classes (int): the number of classes in a task
num_inner_steps (int): number of inner-loop optimization steps
inner_lr (float): learning rate for inner-loop optimization
outer_lr (float): learning rate for outer-loop optimization
n_support (int): the number of support images in a task
n_query (int): the number of query images in a task
log_dir (str): path to logging metrics
"""
print("Initializing MAML model")
model_layers = [layers.Input(shape=(28,28,1))]
for i in range(NUM_CONV_LAYERS):
model_layers.append(
layers.Conv2D(filters=64, kernel_size=3, strides=2, padding="same", name=f"Conv{i+1}")
)
model_layers.append(
layers.BatchNormalization(name=f"BN{i+1}")
)
model_layers.append(
layers.ReLU(name=f"ReLU{i+1}")
)
model_layers.append(layers.Flatten())
model_layers.append(layers.Dense(num_classes, activation='softmax', name='Classification'))
self.model = keras.Sequential(model_layers)
self._log_dir = log_dir
self._save_dir = os.path.join(log_dir, 'state')
os.makedirs(self._log_dir, exist_ok=True)
os.makedirs(self._save_dir, exist_ok=True)
self._num_inner_steps = num_inner_steps
self._inner_lr = inner_lr
self._outer_lr = outer_lr
self._optimizer = keras.optimizers.Adam(learning_rate=self._outer_lr)
self.train_data = DataLoader('train', num_classes, n_support, n_query)
self.val_data = DataLoader('test', num_classes, n_support, n_query)
self._train_step = 0
print("Finished initialization")
def _inner_loop(self, theta, support_data):
"""Computes the adapted network parameters via the MAML inner loop.
Args:
theta (List[Tensor]): current model parameters
support_data (Tensor): task support set inputs
images shape: (num_images, channels, height, width), labels shape: (num_images)
Returns:
parameters (List[Tensor]): adapted network parameters
accuracies (list[float]): support set accuracy over the course of
the inner loop, length num_inner_steps + 1
"""
accuracies = []
phi = tf.nest.map_structure(lambda x: tf.Variable(tf.zeros_like(x)), self.model.trainable_weights) # init phi to zero
tf.nest.map_structure(lambda x, y: x.assign(y), phi, theta) # copy theta to phi
loss_fn = tf.keras.losses.SparseCategoricalCrossentropy()
opt_fn = tf.keras.optimizers.SGD(learning_rate=self._inner_lr)
metrics_fn = tf.keras.metrics.SparseCategoricalAccuracy(name='Inner Accuracy')
############### Your code here ###################
# TODO: finish implementing this method.
# This method computes the inner loop (adaptation) procedure for one
# task. It also scores the model along the way.
# Make sure to populate accuracies and update parameters.
# Iterate over the batches of the dataset.
# accuracy at theta
x_batch_train, y_batch_train = list(support_data.as_numpy_iterator())[0]
# phi * L
tf.nest.map_structure(lambda x, y: x.assign(y), self.model.trainable_weights, phi)
for _ in range(self._num_inner_steps):
with tf.GradientTape() as train_tape:
logits = self.model(x_batch_train, training=True)
train_loss = loss_fn(y_batch_train, logits)
grads = train_tape.gradient(train_loss, self.model.trainable_variables)
opt_fn.apply_gradients(zip(grads, self.model.trainable_variables))
metrics_fn.update_state(y_batch_train, logits)
accuracies.append(metrics_fn.result())
metrics_fn.reset_states()
logits = self.model(x_batch_train, training=True)
metrics_fn.update_state(y_batch_train, logits)
accuracies.append(metrics_fn.result())
tf.nest.map_structure(lambda x, y: x.assign(y), phi, self.model.trainable_weights)
#####################################################
assert phi != None
assert len(accuracies) == self._num_inner_steps + 1
return phi, accuracies
def _outer_loop(self, task_batch, train=None):
"""Computes the MAML loss and metrics on a batch of tasks.
task_batch = train_task
Args:
task_batch (tuple): batch of tasks from an Omniglot DataLoader
train (bool): whether we are training or evaluating
Returns:
outer_loss (Tensor): mean MAML loss over the batch
accuracies_support (ndarray): support set accuracy over the
course of the inner loop, averaged over the task batch
shape (num_inner_steps + 1,)
accuracy_query (float): query set accuracy of the adapted
parameters, averaged over the task batch
"""
theta = tf.nest.map_structure(lambda x: tf.Variable(tf.zeros_like(x)), self.model.trainable_weights) # Q : theta 는 task 마다 바꿔줘야 되는거 아닌가? 이 자리가 맞나?
tf.nest.map_structure(lambda x, y: x.assign(y), theta, self.model.trainable_weights)
metrics_fn = tf.keras.metrics.SparseCategoricalAccuracy(name='Outer Accuracy')
outer_loss_batch = []
accuracies_support_batch = []
accuracy_query_batch = []
############### Your code here ###################
# TODO: finish implementing this method.
# For a given task, use the _inner_loop method to adapt, then
# compute the MAML loss and other metrics.
# Make sure to populate outer_loss_batch, accuracies_support_batch,
# and accuracy_query_batch.
# Use keras.losses.SparseCategoricalCrossentropy to compute classification losses
loss_fn = tf.keras.losses.SparseCategoricalCrossentropy()
opt_fn = tf.keras.optimizers.SGD(learning_rate=self._outer_lr)
for task in task_batch:
support, query = task # task = 1batch
# adapt to current_task;
phi, accuracies = self._inner_loop(theta, support_data=support)
accuracies_support_batch.append(accuracies)
tf.nest.map_structure(lambda x, y: x.assign(y), self.model.trainable_weights, phi)
# update theta
img, label = list(query.as_numpy_iterator())[0]
with tf.GradientTape() as tape:
preds = self.model(img)
loss = loss_fn(label, preds)
grads = tape.gradient(loss, self.model.trainable_weights)
self._optimizer.apply_gradients(zip(grads, self.model.trainable_weights))
tf.nest.map_structure(lambda x, y: x.assign(y), theta, self.model.trainable_weights)
metrics_fn.update_state(label, preds)
outer_loss_batch.append(loss)
accuracy_query_batch.append(metrics_fn.result())
metrics_fn.reset_states()
#####################################################
# Update model with new theta
tf.nest.map_structure(lambda x, y: x.assign(y), self.model.trainable_weights, theta)
outer_loss = tf.reduce_mean(outer_loss_batch).numpy()
accuracies_support = np.mean(accuracies_support_batch, axis=0)
accuracy_query = np.mean(accuracy_query_batch)
return outer_loss, accuracies_support, accuracy_query
def train(self, train_steps):
"""Train the MAML.
Optimizes MAML meta-parameters
while periodically validating on validation_tasks, logging metrics, and
saving checkpoints.
Args:
train_steps (int) : the number of steps this model should train for
"""
print(f"Starting MAML training at iteration {self._train_step}")
val_batches = self.val_data.generate_task(NUM_TEST_TASKS)
for i in range(1, train_steps+1):
self._train_step += 1
train_task = self.train_data.generate_task(NUM_TRAIN_TASKS)
outer_loss, accuracies_support, accuracy_query = self._outer_loop(train_task, train=True)
if self._train_step % SAVE_INTERVAL == 0:
self._save_model()
if i % LOG_INTERVAL == 0:
print(
f'Iteration {self._train_step}: '
f'loss: {outer_loss:.3f} | '
f'support accuracy: '
f'{accuracies_support[-1]:.3f} | '
f'query accuracy: '
f'{accuracy_query:.3f}'
)
tf.summary.scalar('loss/train', outer_loss, self._train_step)
tf.summary.scalar(
'train_accuracy/pre_adapt_support',
accuracies_support[0],
self._train_step
)
tf.summary.scalar(
'train_accuracy/post_adapt_support',
accuracies_support[-1],
self._train_step
)
tf.summary.scalar(
'train_accuracy/post_adapt_query',
accuracy_query,
self._train_step
)
if i % VAL_INTERVAL == 0:
outer_loss, accuracies_support, accuracy_query = self._outer_loop(val_batches, train=False)
loss= outer_loss
accuracy_post_adapt_support = (accuracies_support[-1])
accuracy_post_adapt_query = (accuracy_query)
print(
f'\t-Validation: '
f'loss: {loss:.3f} | '
f'post-adaptation support accuracy: '
f'{accuracy_post_adapt_support:.3f} | '
f'post-adaptation query accuracy: '
f'{accuracy_post_adapt_query:.3f}'
)
tf.summary.scalar('loss/validation', outer_loss, self._train_step)
tf.summary.scalar(
'validation_accuracy/pre_adapt_support',
accuracies_support[0],
self._train_step
)
tf.summary.scalar(
'validation_accuracy/post_adapt_support',
accuracies_support[-1],
self._train_step
)
tf.summary.scalar(
'validation_accuracy/post_adapt_query',
accuracy_post_adapt_query,
self._train_step
)
def test(self):
accuracies = []
test = [self.val_data.generate_task(NUM_TEST_TASKS//10) for _ in range(10)]
for test_data in test:
_, _, accuracy_query = self._outer_loop(test_data, train=False)
accuracies.append(accuracy_query)
mean = np.mean(accuracies)
std = np.std(accuracies)
mean_95_confidence_interval = 1.96 * std / np.sqrt(10)
print(
f'Accuracy over {NUM_TEST_TASKS} test tasks: '
f'mean {mean:.3f}, '
f'95% confidence interval {mean_95_confidence_interval:.3f}'
)
def load(self, checkpoint_step):
# Loads model from checkpoint step
target_path = os.path.join(self._save_dir, f"{checkpoint_step}.h5")
print("Loading checkpoint from", target_path)
try:
self.model = keras.models.load_model(target_path)
self._train_step = checkpoint_step
print(f'Loaded checkpoint iteration {checkpoint_step}.')
except:
raise ValueError(f'No checkpoint for iteration {checkpoint_step} found.')
def _save_model(self):
# Save a model to 'save_dir'
self.model.save(os.path.join(self._save_dir, f"{self._train_step}.h5"))
print("Saved Checkpoint")
def main(args):
log_dir = args.log_dir
if log_dir is None: log_dir = os.path.join(os.path.abspath('.'), 'p1_log')
print(f'log_dir: {log_dir}')
maml = MAML(
args.num_way,
args.num_inner_steps,
args.inner_lr,
args.outer_lr,
args.num_support,
args.num_query,
log_dir
)
if args.checkpoint_step > -1:
maml.load(args.checkpoint_step)
else:
print('Checkpoint loading skipped.')
# Run "tensorboard --logdir [PATH TO LOG DIR]" to visualize graph
callback = tf.keras.callbacks.TensorBoard(log_dir)
callback.set_model(maml.model)
writer = tf.summary.create_file_writer(log_dir)
writer.set_as_default()
if not args.test:
print(
f'Training with composition: \n'
f'\tnum_way={args.num_way}\n'
f'\tnum_support={args.num_support}\n'
f'\tnum_query={args.num_query}'
)
maml.train(args.num_train_iterations)
else:
print(
f'Testing with composition: \n'
f'\tnum_way={args.num_way}\n'
f'\tnum_support={args.num_support}\n'
f'\tnum_query={args.num_query}'
)
maml.test()
if __name__ == '__main__':
parser = argparse.ArgumentParser('Train a MAML!')
parser.add_argument('--log_dir', type=str, default=None,
help='directory to save to or load from')
parser.add_argument('--num_way', type=int, default=5,
help='number of classes in a task')
parser.add_argument('--num_support', type=int, default=5,
help='number of support examples per class in a task')
parser.add_argument('--num_query', type=int, default=15,
help='number of query examples per class in a task')
parser.add_argument('--num_inner_steps', type=int, default=5,
help='number of inner-loop updates')
parser.add_argument('--inner_lr', type=float, default=0.4,
help='inner-loop learning rate initialization')
parser.add_argument('--outer_lr', type=float, default=0.001,
help='outer-loop learning rate')
parser.add_argument('--num_train_iterations', type=int, default=500,
help='number of outer-loop updates to train for')
parser.add_argument('--test', default=False, action='store_true',
help='train or test')
parser.add_argument('--checkpoint_step', type=int, default=-1,
help=('checkpoint iteration to load for resuming '
'training, or for evaluation (-1 is ignored)'))
args = parser.parse_args()
main(args)