-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathgan.py
207 lines (172 loc) · 5.84 KB
/
gan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
from pdb import set_trace as T
import numpy as np
import torch
from torch import nn
from torch.nn import functional as F
class LeakyReluLinear(nn.Module):
def __init__(self, xdim, h):
super().__init__()
self.linear = nn.Linear(xdim, h)
def forward(self, x):
return F.leaky_relu(self.linear(x), 0.2)
class LeakyReluBatchLinear(nn.Module):
def __init__(self, xdim, h):
super().__init__()
self.batchnorm = nn.BatchNorm1d(h)
self.linear = nn.Linear(xdim, h)
def forward(self, x):
return F.leaky_relu(self.batchnorm(self.linear(x)), 0.2)
def normal_init(m, mean, std):
if isinstance(m, nn.ConvTranspose2d) or isinstance(m, nn.Conv2d):
m.weight.data.normal_(mean, std)
m.bias.data.zero_()
class Discriminator(nn.Module):
def __init__(self):
super().__init__()
self.criterion = nn.BCELoss()
def forward(self, x):
shape = x.shape
batch = shape[0]
x = x.view(batch, -1)
return x
def loss(self, x, noise, G):
D, batch = self, x.size(0)
zero = torch.zeros(batch, 1).cuda()
one = torch.ones(batch, 1).cuda()
real = self.criterion(D(x), one)
fake = self.criterion(D(G(noise)), zero)
loss = real + fake
return loss
class Generator(nn.Module):
def __init__(self):
super().__init__()
self.criterion = nn.BCELoss()
def loss(self, x, noise, D):
G, batch = self, x.size(0)
one = torch.ones(batch, 1).cuda()
loss = self.criterion(D(G(noise)), one)
return loss
class SimpleGenerator(Generator):
def __init__(self, xdim, zdim, h):
super().__init__()
self.inp = LeakyReluLinear(zdim, h)
self.hidden = LeakyReluLinear(h, h)
self.out = nn.Linear(h, xdim)
self.xdim = xdim
self.zdim = zdim
def forward(self, z):
batch, x = z.size(0), z
x = self.inp(x)
x = self.hidden(x)
x = torch.tanh(self.out(x))
x = x.view(batch, self.xdim)
return x
class SimpleDiscriminator(Discriminator):
def __init__(self, xdim, h):
super().__init__()
self.inp = LeakyReluLinear(xdim, h)
self.hidden = LeakyReluLinear(h, h)
self.out = nn.Linear(h, 1)
def forward(self, x):
shape = x.shape
batch = shape[0]
x = x.view(batch, -1)
x = self.inp(x)
x = self.hidden(x)
x = torch.sigmoid(self.out(x))
return x
class DCGenerator(Generator):
# initializers
def __init__(self, zdim=64, h=16, mean=0.0, std=0.02):
super().__init__()
self.deconv1 = nn.ConvTranspose2d(zdim, h*8, 4, 1, 0)
self.deconv1_bn = nn.BatchNorm2d(h*8)
self.deconv2 = nn.ConvTranspose2d(h*8, h*4, 4, 2, 1)
self.deconv2_bn = nn.BatchNorm2d(h*4)
self.deconv3 = nn.ConvTranspose2d(h*4, h*2, 4, 2, 1)
self.deconv3_bn = nn.BatchNorm2d(h*2)
self.deconv4 = nn.ConvTranspose2d(h*2, 1, 4, 2, 1)
#self.deconv4 = nn.ConvTranspose2d(h*2, h, 4, 2, 1)
#self.deconv4_bn = nn.BatchNorm2d(h)
#self.deconv5 = nn.ConvTranspose2d(h, 1, 4, 2, 1)
self.weight_init(mean, std)
self.zdim = zdim
# weight_init
def weight_init(self, mean, std):
for m in self._modules:
normal_init(self._modules[m], mean, std)
# forward method
def forward(self, z):
batch = z.size(0)
x = z.view(*z.shape, 1, 1)
x = F.relu(self.deconv1_bn(self.deconv1(x)))
x = F.relu(self.deconv2_bn(self.deconv2(x)))
x = F.relu(self.deconv3_bn(self.deconv3(x)))
x = torch.tanh(self.deconv4(x))
#x = F.relu(self.deconv4_bn(self.deconv4(x)))
#x = F.tanh(self.deconv5(x))
return x
class DCDiscriminator(Discriminator):
# initializers
def __init__(self, h=128, mean=0.0, std=0.02):
super().__init__()
self.conv1 = nn.Conv2d(1, h, 4, 2, 1)
self.conv2 = nn.Conv2d(h, h*2, 4, 2, 1)
self.conv2_bn = nn.BatchNorm2d(h*2)
self.conv3 = nn.Conv2d(h*2, h*4, 4, 2, 1)
self.conv3_bn = nn.BatchNorm2d(h*4)
self.conv4 = nn.Conv2d(h*4, 1, 4, 2, 0)
#self.conv4 = nn.Conv2d(h*4, h*8, 4, 2, 1)
#self.conv4_bn = nn.BatchNorm2d(h*8)
#self.conv5 = nn.Conv2d(h*8, 1, 4, 1, 0)
self.weight_init(mean, std)
# weight_init
def weight_init(self, mean, std):
for m in self._modules:
normal_init(self._modules[m], mean, std)
# forward method
def forward(self, input):
x = F.leaky_relu(self.conv1(input), 0.2)
x = F.leaky_relu(self.conv2_bn(self.conv2(x)), 0.2)
x = F.leaky_relu(self.conv3_bn(self.conv3(x)), 0.2)
x = torch.sigmoid(self.conv4(x))
#x = F.leaky_relu(self.conv4_bn(self.conv4(x)), 0.2)
#x = F.sigmoid(self.conv5(x))
return x
class GAN(nn.Module):
def __init__(self, zdim):
super().__init__()
self.zdim = zdim
def forward(self, z):
x = self.generator(z)
a = self.discriminator(x)
return a
def sample(self, z):
#self.eval()
x = self.generator(z)
x = x.detach().cpu().numpy()
if x.shape[1] == 1:
x = x.squeeze(1)
#self.train()
return x
def noise(self, batch):
return torch.randn(batch, self.zdim).cuda()
def zero_grad(self):
self.dOpt.zero_grad()
self.gOpt.zero_grad()
def train_step(self, x):
self.zero_grad()
gLoss = self.generator.stepG(x)
gLoss.backward()
self.gOpt.step()
return dLoss + gLoss
class SimpleGAN(GAN):
def __init__(self, xdim, zdim=64, hd=256, hg=256, lr=2e-4):
super().__init__(zdim)
self.discriminator = SimpleDiscriminator(xdim, hd)
self.generator = SimpleGenerator(xdim, zdim, hg)
class DCGAN(GAN):
def __init__(self, zdim=16, h=8, lr=2e-4):
super().__init__(zdim)
self.discriminator = DCDiscriminator(h)
self.generator = DCGenerator(zdim, h)