-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathutils.py
66 lines (57 loc) · 1.66 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
from pdb import set_trace as T
import numpy as np
import torch
def count_parameters(model):
return sum(p.numel() for p in model.parameters() if p.requires_grad)
def getParameters(paramDict):
ret = []
for k, v in paramDict.items():
v = v.data.view(-1).float()
ret.append(v)
return torch.cat(ret)
def setParameters(ann, meanVec):
ind = 0
meanVec = meanVec.ravel()
stateDict = {}
for k, e in ann.state_dict().items():
shape = e.size()
nParams = e.numel()
assert e.data.dtype in (torch.float32, torch.long)
if len(shape) != 0:
ary = np.array(meanVec[ind:ind+nParams]).reshape(*shape)
ary = torch.Tensor(ary)
if e.data.dtype == torch.float32:
e.data = ary.float()
elif e.data.dtype == torch.long:
e.data = ary.long()
else:
ary = meanVec[ind]
stateDict[k] = e
ind += nParams
ann.load_state_dict(stateDict)
#Continuous moving average
class CMA():
def __init__(self):
self.t = 1.0
self.cma = None
def update(self, x):
if self.cma is None:
self.cma = x
return
self.cma = (x + self.t*self.cma)/(self.t+1)
self.t += 1.0
class GANLoss():
def __init__(self, batch):
self.dLoss = CMA()
self.gLoss = CMA()
self.epochs = {'D':[], 'G':[]}
def update(self, d, g):
self.dLoss.update(d)
self.gLoss.update(g)
def epoch(self):
self.epochs['D'].append(self.dLoss.cma)
self.epochs['G'].append(self.gLoss.cma)
self.dLoss = CMA()
self.gLoss = CMA()
def __str__(self):
return 'D: ' + str(self.dLoss.cma)[:5] + ', G: ' + str(self.gLoss.cma)[:4]