diff --git a/Python/bayesian_cuped.ipynb b/Python/bayesian_cuped.ipynb
new file mode 100644
index 0000000..8b089a1
--- /dev/null
+++ b/Python/bayesian_cuped.ipynb
@@ -0,0 +1,518 @@
+{
+ "cells": [
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import arviz as az\n",
+ "import jax.numpy as jnp\n",
+ "import matplotlib.pyplot as plt\n",
+ "import numpy as np\n",
+ "import numpyro\n",
+ "import numpyro.distributions as dist\n",
+ "import pandas as pd\n",
+ "from jax import random\n",
+ "from numpyro.infer import MCMC, NUTS\n",
+ "\n",
+ "numpyro.set_host_device_count(n=4)\n",
+ "\n",
+ "az.style.use(\"arviz-darkgrid\")\n",
+ "plt.rcParams[\"figure.figsize\"] = [12, 7]\n",
+ "plt.rcParams[\"figure.dpi\"] = 100\n",
+ "plt.rcParams[\"figure.facecolor\"] = \"white\"\n",
+ "\n",
+ "rng_key = random.PRNGKey(seed=42)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "class dgp_cuped:\n",
+ " \"\"\"\n",
+ " Data Generating Process: CUPED\n",
+ " \"\"\"\n",
+ "\n",
+ " def __init__(self, alpha=5, beta=0, gamma=3, delta=2):\n",
+ " self.alpha = alpha\n",
+ " self.beta = beta\n",
+ " self.gamma = gamma\n",
+ " self.delta = delta\n",
+ "\n",
+ " def generate_data(self, N=100, seed=1):\n",
+ " np.random.seed(seed)\n",
+ "\n",
+ " # Individuals\n",
+ " i = range(1, N + 1)\n",
+ "\n",
+ " # Treatment status\n",
+ " d = np.random.binomial(1, 0.5, N)\n",
+ "\n",
+ " # Individual outcome pre-treatment\n",
+ " y0 = self.alpha + self.beta * d + np.random.normal(0, 1, N)\n",
+ " y1 = y0 + self.gamma + self.delta * d + np.random.normal(0, 1, N)\n",
+ "\n",
+ " # Generate the dataframe\n",
+ " df = pd.DataFrame({\"i\": i, \"ad_campaign\": d, \"revenue0\": y0, \"revenue1\": y1})\n",
+ "\n",
+ " return df"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " i | \n",
+ " ad_campaign | \n",
+ " revenue0 | \n",
+ " revenue1 | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ " 5.315635 | \n",
+ " 8.359304 | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " 2 | \n",
+ " 1 | \n",
+ " 2.977799 | \n",
+ " 7.751485 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " 3 | \n",
+ " 0 | \n",
+ " 4.693796 | \n",
+ " 9.025253 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " 4 | \n",
+ " 0 | \n",
+ " 5.827975 | \n",
+ " 8.540667 | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " 5 | \n",
+ " 0 | \n",
+ " 5.230095 | \n",
+ " 8.910165 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " i ad_campaign revenue0 revenue1\n",
+ "0 1 0 5.315635 8.359304\n",
+ "1 2 1 2.977799 7.751485\n",
+ "2 3 0 4.693796 9.025253\n",
+ "3 4 0 5.827975 8.540667\n",
+ "4 5 0 5.230095 8.910165"
+ ]
+ },
+ "execution_count": 3,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df = dgp_cuped().generate_data()\n",
+ "df.head()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "1.7914301325347406"
+ ]
+ },
+ "execution_count": 4,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "(\n",
+ " np.mean(df.loc[df.ad_campaign == True, \"revenue1\"])\n",
+ " - np.mean(df.loc[df.ad_campaign == False, \"revenue1\"])\n",
+ ")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "ad_campaign = df.ad_campaign.to_numpy()\n",
+ "revenue0 = df.revenue0.to_numpy()\n",
+ "revenue1 = df.revenue1.to_numpy()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def cuped_model(ad_campaign, revenue0, revenue1):\n",
+ " n_samples = len(ad_campaign)\n",
+ " intercept_target = numpyro.sample(\"intercept_target\", dist.Normal(0, 2))\n",
+ " theta = numpyro.sample(\"theta\", dist.Normal(0, 2))\n",
+ " sigma_theta = numpyro.sample(\"sigma_theta\", dist.HalfCauchy(2))\n",
+ "\n",
+ " mu_target = intercept_target + theta * revenue0\n",
+ "\n",
+ " with numpyro.plate(\"target_conditioning\", n_samples):\n",
+ " numpyro.sample(\n",
+ " \"revenue1_pred\", dist.Normal(mu_target, sigma_theta), obs=revenue1\n",
+ " )\n",
+ "\n",
+ " revenue_cuped = numpyro.deterministic(\n",
+ " \"revenue_cuped\", revenue1 - theta * (revenue0 - jnp.mean(revenue0))\n",
+ " )\n",
+ "\n",
+ " intercept_cuped = numpyro.sample(\"intercept_cuped\", dist.Normal(0, 2))\n",
+ " beta_cuped = numpyro.sample(\"beta_cuped\", dist.Normal(0, 3))\n",
+ "\n",
+ " with numpyro.plate(\"cuped_conditioning\", len(ad_campaign)):\n",
+ " numpyro.sample(\n",
+ " \"revenue_cuped_pred\",\n",
+ " dist.Normal(intercept_cuped + beta_cuped * ad_campaign, 1),\n",
+ " obs=revenue_cuped,\n",
+ " )"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/svg+xml": [
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n"
+ ],
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 7,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "numpyro.render_model(\n",
+ " cuped_model,\n",
+ " model_args=(ad_campaign, revenue0, revenue1),\n",
+ " render_distributions=True,\n",
+ " render_params=True,\n",
+ ")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "6654e04b092b4071afaa739dd484eb10",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ " 0%| | 0/3500 [00:00, ?it/s]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "528b5998c76842a4ba318b584bfba57f",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ " 0%| | 0/3500 [00:00, ?it/s]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "732b4df09f32421eab8d68c5552f9744",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ " 0%| | 0/3500 [00:00, ?it/s]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "420f01d6ea964309ae6ff7445ff9fd27",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ " 0%| | 0/3500 [00:00, ?it/s]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "sampler = NUTS(cuped_model)\n",
+ "mcmc = MCMC(\n",
+ " sampler=sampler,\n",
+ " num_warmup=1_500,\n",
+ " num_samples=2_000,\n",
+ " num_chains=4,\n",
+ ")\n",
+ "rng_key, rng_subkey = random.split(rng_key)\n",
+ "mcmc.run(rng_subkey, ad_campaign, revenue0, revenue1)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "idata = az.from_numpyro(mcmc)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABLsAAALHCAYAAABmNkB7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACZXElEQVR4nOzdeZzV8/7A8dd3mmZKWkbapCypbIkkIkuLSkjIVtaS7FxbXJdrd+1+ri17SLJLpVIRsoSQLWWLUlLa95n5/P741tCtNNXMnO31fDzu436dWc7nNGdmznnN+/s5UQghIEmSJEmSJKWBrEQvQJIkSZIkSSopxi5JkiRJkiSlDWOXJEmSJEmS0oaxS5IkSZIkSWnD2CVJkiRJkqS0YeySJEmSJElS2jB2SZIkSZIkKW0YuyRJkiRJkpQ2jF2SJEmSJElKG8YuSZJUKtq0aUPjxo2ZOnVqopdSLOtabzLdjnWtpXHjxjRu3DhBq1q7ZPp3Kw0TJ06kd+/etGjRgh133JHGjRvz4YcfbtDn+O2337j++utp06YNu+22G+3bt+ehhx6isLCwlFYtSVJmyE70AiRJSnVt2rRh2rRpq12Wm5tLzZo12WuvvejRowcNGzYs83U98cQTLFiwgFNOOYUqVaqU+fXrT+n4tUjH21Rcs2fP5uSTT2bevHnUqlWL7bffniiKqFy5crE/x4cffsi5557L/Pnz2Wqrrdhmm22YNGkSd9xxB7/99htXXXVVKd4CSZLSm7FLkqQSsu2227LFFlsAsGDBAn766SdeeuklBg8ezP/93//Rpk2bMl3Pk08+ybRp0zjyyCMTEiPq1atHTk4O5cuXL/PrLkklcTtK6muRTP+m67tNybTWkjZkyBDmzZtH27Ztuffee8nK2rCTJSZNmsSZZ55JYWEhd911F506dQJgzJgxnHnmmTzzzDOceOKJbLfddqWxfEmS0p6xS5KkEtK7d2+OOuqoov+eNWsWl156Ke+99x5XXHEFo0ePplKlSglcYdnq169fopdQIpLpdiTTWtYnlda6oX744QcAWrVqtcGhq7CwkD59+rB48WJuueWWotAFcOCBB3LAAQfw1ltvMXLkSHr16lWi65YkKVO4Z5ckSaVkyy235NZbbyUnJ4e5c+fy3nvvJXpJkkrAsmXLAKhQocIGf+zQoUP5+uuvadKkCV26dFnj7bvvvjsA33///aYsUZKkjGbskiSpFNWoUYNtt90WgJ9++mm1t82ZM4dbb72VDh06sNtuu7HXXntx0kknMWjQIEIIa3yuadOmcfXVV9O2bVt23XVX9thjD9q2bcs555zDkCFDit7vpZdeonHjxkX7iLVt27ZoA/O1baKdn5/PgAEDOOGEE2jevDlNmjShY8eO3HXXXSxcuHCNdfx1M/Thw4fTvXt3mjdvvsZm5H+3QfmG3vbiXuf6TJs2jUsuuYSWLVvStGlTDj/8cPr377/W61zf7SjO12NDvhbFuY3F2fT9tddeo2vXruyxxx60aNGCs88+m0mTJq31fadOnUrjxo3/9hTb/938vri3aX1r3ZT7wJgxY+jevTt77LEHe+65J6effjpff/31Om/D39mQdfz3v/+lcePGvPTSSwBcccUVRes66aSTinV9TzzxBAAnnnjiWt+++eabAzB37tyNuj2SJMnTGCVJKnVre+I+ZcoUTjnlFKZPn0758uVp1KgR8+fPZ9y4cYwbN46xY8fyn//8hyiKgDhKdO3alTlz5lCxYkW22247ypUrx/Tp0xk5ciRTp07l0EMPBaB69eo0a9aML7/8kuXLl7PrrruSk5NTdN1/3UR74cKFnHnmmXz00UdkZWVRp04dKlWqxI8//siDDz7IG2+8wVNPPUX16tXXuA0PPfQQd9xxB1tuuSXbbrvtGpv0r8uG3vaSuE6IJ2W6devG3Llzyc3NZYcddmDOnDlcd911fPfdd8X+PFD8r8eGfC1K4jY+/PDD3H777dSoUYPtt9+eH3/8kVGjRjF27FgeffRRmjdvvkG3c2025jb9r025DwwYMIBrr72WLbfcku22244ff/yRd955h08++YQXXniBBg0aFPu2bOg66tSpQ7NmzZgyZQqzZ89ebZ++Ro0arff6fv75Z7744gtycnJo167dWt9nxYoVAKv9m0qSpA0UJEnSJmndunVo1KhRePHFF9d428yZM8Ouu+4aGjVqFIYPHx5CCKGwsDAcddRRoVGjRuHEE08Mv//+e9H7jxkzJuy+++6hUaNGoX///kWXX3fddaFRo0ahT58+YeHChatdx3fffReeffbZda7rl19+Wefa//GPf4RGjRqFU045Jfz8889Fl8+dOzece+65oVGjRuG8885b7WMaNWoUGjVqFHbZZZcwcODAUFhYGEIIYcWKFWHFihV/e/0bc9s35DrXpbCwMBx55JGhUaNGoUePHmHOnDlFbxs8eHDYZZddws4777zWf6+13Y4N/XoU52tRnNu4rs/z14997LHHQkFBQQghhMWLF4eLL744NGrUKLRu3TosWbJktY/75Zdfit62vnX9r/XdpnW9fVPvA02bNl3te23BggXhlFNOCY0aNQoXXnjhOm/H/9rYdYQQQp8+fdb5Pf93nnrqqdCoUaNw6qmnrvN97rrrrtCoUaNwzTXXbNDnliRJf/I0RkmSSsns2bO57LLLWL58OVWrVmXfffcF4P333+fLL78kJyeHO++8ky233LLoYw444ADOOeccAB555JGiqbBVp0Ceeuqpa2xy36BBA4477rgNXt/EiRMZMmQIdevW5d5776VevXpFb6tatSq33norderUYcSIEWudLjr++OM59thji6ZesrOzyc7++6Hxjbntm3qdAB988AFfffUVFSpU4LbbbqNatWpFbzv00EM5/vjjyc/PX+/nWaU0vh6rbOxtBNh///057bTTijZNr1ixIjfddBM1atRg2rRpq53umiibeh/o2rXrai8Esfnmm3PFFVcA8M4775TZOjbG+PHjAXjvvfdWO/Xzr/974IEHANhmm21K5DolScpExi5JkkpI3759OeGEEzjhhBM47LDDOPDAA3nvvfcoX748119/fdFePO+++y4AHTt2pEaNGmt8nuOPP56cnBymTZtW9KpvderUAeK9nErqiffIkSOL1rFqbX9VsWJFWrZsSQiBjz/+eI23H3HEERt8nRtz2zf1OuHPCNKxY8ei087+qlu3bhv0+Urj67HKxt5GgO7du69xWU5ODl27dgX+/PdPpE29D6y6LX/VuHFjcnNzWbBgAXPmzCmTdWyMb775BoAdd9yRZs2arfV/q8LmjjvuWCLXKUlSJnLPLkmSSshPP/1UNPFTvnx5atSoQfPmzenRowc77bTTau8HsMMOO6z182y++ebUqVOHKVOm8NNPP9GgQQO6d+/OK6+8wv3338+rr75Kq1ataN68OXvvvTe1atXaqPWu2rR85MiRfPrpp2t9n19//RWA3377bY23bcjeSKtszG3f1Ov86/Wu6+O33XZbsrOziz3dVRpfj1U29jb+3ceuuvx/XyQhETb1PlC/fv21ftwWW2zB9OnTWbx4MXl5eaW+jg0VQijarP9/JylX+eOPP9h3333Jzs6madOmm3R9kiRlMmOXJEkl5Oabb17t9Kp1Wbx4McBaJ4xWqV69OlOmTGHRokUA7LTTTjz99NP897//5YMPPmDgwIEMHDiQKIrYb7/9+Oc//7nBT8YXLFgAxJt0T5ky5W/fd9myZWtcttlmm23Q9cHG3fZNvc6/Xu+6IkhWVhZ5eXn8/vvvxfp8pfH1WGVjbyOw1hcSAIpO0Vvbv2lZK637wKpTN4s7abep69hQCxcuZPny5QBrnSSDeNoshECLFi2oWLHiJl+nJEmZytglSVIZW/Vk/Y8//ljn+8yePRtgtf2gdt99dx599FEWLVrE+PHj+fDDDxk8eDDvvvsup512GoMHD6ZKlSobvI4bbriBY445ZmNuygbb2NteUte7rlPcCgsLmTt37gZ9zpL+epSEP/74g9q1a69x+br+TVftC7auQLQqCJWkRN0HEr2OVa+yGEURFSpUWOv7DB06FKDolVUlSdLGcc8uSZLK2LbbbgvAd999t9a3L1y4kOnTp6/2vn9VqVIl9t9/fy655BJef/116tevz2+//cbbb7+9QetYdfrWqtMZy8Km3vZNvd517b00ZcqUohixoUrq61ESvv/++7+9/H//TVdND60r+Pz8888lt7iVEnUfSPQ6qlSpQlZWFiEElixZssbbf/zxR8aMGUONGjU4/PDDN/n6JEnKZMYuSZLK2P777w/AsGHD1nra3MCBA1m+fDl169Zl++23/9vPVbFiRRo1agTAzJkzV3vbqumRtZ2CCNCuXTsABg0aVOxNvTdVSd72DdGqVaui613bbX3mmWdK5HrW9fVY39eipKztdixfvpwXXngBgP3222+1t+Xl5VG5cmWWLl3K5MmT1/jY559/fp3XtbG3KVH3gUSvIzs7u+gVFidMmLDa2woLC7nuuusoLCzkggsuIDc3d5OvT5KkTGbskiSpjO2zzz40adKE5cuXc9FFFxWdKgXxnj333nsvAL169So6zezf//43Q4cOXWMi5KOPPuL9998HYOedd17tbas2wB43btxa19GkSRMOOeQQ5s6dS48ePfj6669Xe3tBQQEffvghF198cdFeQ5tqY257SWjZsiU777wzS5Ys4bLLLmPevHlFbxs6dCgDBgwoehW84tjQr8f6vhYlZcyYMfTr16/otMSlS5dy1VVXMXPmTOrUqbPG6XFRFBWFwP/85z+r7U318ssv8+KLL67zujb2NiXqPpAM6+jQoQMAd955JwsXLgTiCbLLLruM9957j9atW5fZKcWSJKUz9+ySJKmMRVHEHXfcwcknn8y4ceM46KCDaNiwIQsXLizaKP6II47g+OOPL/qYzz77jGeffbZoOqRSpUrMnj2badOmAdC5c2f22Wef1a7nkEMO4a233uKaa67hmWeeoVq1agD885//LHp1yBtvvJH58+czduxYjjzySLbaaitq1KjBkiVL+Pnnn1m6dCkAN910U8Jue0ld76233sqJJ57I22+/zQEHHMAOO+zAnDlzmDZtGt26dWPMmDFF/57rs6Ffj+J8LUrCBRdcwE033cTDDz9M7dq1+fHHH1m4cCG5ubncdttta930/LzzzmPMmDG8++67tGrViu22246ZM2fy+++/c80113DNNdes9bo29jYl6j6QDOvo0aMHL730Ep999hkHHXQQ9evX58cff2Tx4sW0atWKu+++u8SuS5KkTGbskiQpAbbZZhtefvllHn74YUaPHs3kyZPJyclhr7324phjjqFz586rTZNcccUVjBo1ik8++YTp06fz888/U7NmTVq1akX37t1p3br1GtfRpUsX5s+fzwsvvMCUKVOK9uaaP39+0ftUqlSJRx55hCFDhvDKK6/w1Vdf8fXXX1OtWjUaN25MixYtaN++fYmeVrWht72kNGzYkBdeeIG7776bd999l8mTJ7PNNttw1VVX0b17d9q2bVvsz7WhX4/ifC1KQq9evahduzb9+vXju+++Izs7mzZt2nDBBRew4447rvVjGjRoQP/+/bnzzjsZP348P/74I40bN+b666+ndevW64xdm3KbEnUfSPQ6qlatyoABA7jtttv44IMP+PHHH9lhhx049thj6dq1a5ncZkmSMkEUivv6zJIkSZIkSVKSc88uSZIkSZIkpQ1jlyRJkiRJktKGsUuSJEmSJElpw9glSZIkSZKktGHskiRJkiRJUtowdkmSJEmSJCltGLskSZIkSZKUNrKL+45z5swpzXWUuapVqzJv3rxEL0PaJN6PlQ68HysdeD9WOvB+rHTg/VjpwPvx38vLy1vv+2TsZFdWVsbedKUR78dKB96PlQ68HysdeD9WOvB+rHTg/XjT+S8oSZIkSZKktGHskiRJkiRJUtowdkmSJEmSJCltGLskSZIkSZKUNoxdkiRJkiRJShvGLkmSJEmSJKUNY5ckSZIkSZLShrFLkiRJkiRJacPYJUmSJEmSpLRh7JIkSZIkSVLaMHZJkiRJkiQpbRi7JEmSJEmSlDaMXZIkSZIkSUobxi5JkiRJkiSlDWOXJEmSJEmS0oaxS5IkSZIkSWnD2CVJkiRJkqS0YeySJEmSJElS2jB2SZIkSZIkKW0YuyRJkiRJkpQ2jF2SJEmSJElKG8YuSZIkSZIkpQ1jlyRJkiRJktKGsUuSJEmSJElpw9glSZIkSZKktJGd6AVIkiQpc8yfH/j5F/jjD5g3DwoKgAgqV4ZaNaF+PahSJUr0MiVJUgozdkmSJKlU5OcHvv4Gxn8KX38dmPgt/DFn/R+3Tf1A06ZwQKuIPZtB+fLGL0mSVHzGLkmSJJWYpUsDH3wIb70d+OADWLhozfepWQO23BKqVYXs8hAKYe48+G0mzJwJU36O/zfotUCVKnD4oYEju0TUrmX0kiRJ62fskiRJ0ibJzw+MfQ9Gjg68/wEsXfrn26pUgeZ7QpNdI3baEbbfDjbbbN3Rau7cwJdfwwcfBN5+J54E6z8Ann0ucMThgdNOicjLM3pJkqR1M3ZJkiRpo8z4LfDa4MDgITD7jz8vr1MbWh8EB+wfB65y5Yofp6pVi2i1L7TaN+IfF8QR7fkXA59+Bi+9AsNGBHr3giOPgKwso5ckSVqTsUuSJEnFFkJg/Kfw3AvxFFdhYXz5FnnQsSO0OSiicSOIok0PUeXKRRywfxzNxn8auO+BwLeT4K7/i6e+rrwcatY0eEmSpNUZuyRJkrRe+fmBUaNh4POBSZP/vHzPZtClc8T+rSA7u/TCU7M9Ih5+MJ7ueqBv4JPx0OOMwPXXwB67G7wkSdKfjF2SJElap4ULA4MGwwsvBmb+Hl+WmwudDoFjjoqoX7/sQlNWVkTXo6DFXvDvawOTv4MLLwpceAEceYTBS5IkxYxdkiRJWsP06YHnXwy8NgSWLIkv2yIPjj4qoktnqFo1cXGpfr2IB+6FW28PjBgJd9wVmPl74IyeUYmcPilJklKbsUuSJElAvB/XJ+PhlVcD77wLBSv349puWzju2Ij27SAnJzliUoUKEVddCfXrwyOPBZ56GubOCVx6sRvXS5KU6YxdkiRJGW7ar4HhI2D4iMC0X/+8vPmecPyxEXu3KJkN50taFEWcejJU3wJuuzOeQitXLnDxP5JzvZIkqWwYuyRJkjLQggWBN8fAsOGBCV/8eflmm0GH9vGm8w22T41gdPhhEbm5cP1NgVcGQU5O4LxzDF6SJGUqY5ckSVKGWLIk8P6H8OZbgbFjYfmK+PKsrHiKq2P7+FUVK1ZMvUjU/uCI5SvgP7cGnnsBatWC445J9KokSVIiGLskSZLS2B9/BD4eD2PeDnzwISxb9ufbttsWDukYcXBbqFEj9QLX/zqsU8T8+XD/g4F77w/Urg0H7p/6t0uSJG0YY5ckSVKaCCHw63T4+hv47LPAZ5/DlJ9Xf5+ttoKDDoS2rSMaNUy/U/1OOA5+nQ6vvArX3RB48F5o2DC9bqMkSfp7xi5JkqQUE0Lgjz9g6jT49Vf44cfApMnw7SRYuHDN92/QAPZtCa0PjGi4Q/oFrr+KoogLz4Nffw2M+wj+eXXg0b5QpUr63mZJkrQ6Y5ckSVKSyc8PzJoFv8+Cmb8TH/8eT21NWxm4lixd+8eWLw8Ntoemu8HuTSOa7pZ5oSc7O+Kaq+D0MwO//grXXB+47T9Qrlxm/TtIkpSpjF2SJEkJMmduYPJkmPwd/PRTYPoMmDEDfv8dCgr//mOzsqBWzfi0xPr1oXHDiMaNYNttoXx5o06VKhE3XgdnnhNPeA0YCCd2S/SqJElSWTB2SZIklYEQAlOnwUcfw8efBL7+Jp7YWpfsbKixJWy5JdSoER/XqRNRdyuoWxfq1DZqrU/DHSL+cUH8Co2PPBbYqzk0buS/mSRJ6c7YJUmSVEoKCgKffgaj3wqMGwczflvzfbbeGhruAA22j9iqDtSpE4esLbaArCzDzKY69BB4/wMY8zZce33gsYehQgX/XSVJSmfGLkmSpBI2Y0bg1cGBoUNh9h9/Xp6dDbvuAi32ivfSargDbLaZ4aU0RVHEZRfDV18Hfv4F7n0gcMk//DeXJCmdGbskSZJKyOTJgaeeCbz5FoQQX1alChx4ABzQKg5cxq2yV7VqxJWXwz8uCbzyKuyzd6DVvn4dJElKV8YuSZKkTTR1agE331rIW2P+vGzPZnDkERH77eveWslgr+YRxx0TGPh8vIfXk4/BFlv4dZEkKR0ZuyRJkjbSsmWBJ58OPPPsXFasiF8hsU1rOKl7RIPtDSnJ5ozTIz7+JPD9D3DXPYHrr/FrJElSOjJ2SZIkbYTPJwT+c1vgl1/i/26+J5x3jpErmeXmRlx5BfTqHZ9qOva9wH6ezihJUtrJSvQCJEmSUkl+fuChRwo594I4dFWvDnfdsTl33W7oSgWNGkYcd2x8fMfdgcWLQ2IXJEmSSpyxS5IkqZhmzw6cd2HgyafjDeg7HQJPPxHRvl0uUWToShWnnRJRpw7MnAmPPGbskiQp3Ri7JEmSimHy5ECvswJffAmbV4Jr/x3xzz5ZVK5s5Eo1FStGXPKP+Ov2wkvwzUSDlyRJ6cTYJUmStB7jPgqcfV5g5kyoVw8e7hvRtrWRK5Xt3SKifTsoLIRbbgvk5xu8JElKF8YuSZKkvzFiZODSywNLlsKezaDv/RH1tjZ0pYPzzomoUgW++x6eeyHRq5EkSSXF2CVJkrQOg4cGrr8xUFAA7drC7bdEVPG0xbSRlxdxzlnx1/PxfoFZs5zukiQpHRi7JEmS1mLI64FbbguEAEd1gauvjChf3tCVbg7pALvsDEuWwAMPGbskSUoHxi5JkqT/MWp04D+3xqHr6CPhHxdEZGUZutJRVlbEhedHRBEMHwFffmXwkiQp1Rm7JEmS/mL8p4Ebbo5DV5fOrAwhhq50ttOOEZ0OiY/v+r9AYaHBS5KkVGbskiRJWumHHwJX/CuwYgUcdGA80WXoygy9T4+oVAm+nQRDX0/0aiRJ0qYwdkmSJAHz5gX6XBlYtAia7gZX/TOiXDlDV6bYYouIHqfGX+8HHw4sWOB0lyRJqcrYJUmSMl5+fuDqawPTp0OdOnDT9RG5uYauTHP0kbBNfZg7F5540tglSVKqMnZJkqSM90DfwCfjoWIF+M+NEVWrGroyUXZ2xAXnxV/7F16CqVMNXpIkpSJjlyRJymivDw8MfD4+vvKKiAbbG7oyWYu9IvZuAQUF8NCjxi5JklKRsUuSJGWsr78J3HZ7HDROOwUOOtDQJTird0QUweg34ZuJBi9JklKNsUuSJGWkhQsDV18TWL4C9t8PTjvF0KXYDg0iOraPj+97IBCCwUuSpFRi7JIkSRnpjrsDM36LN6T/1z8jsrKMXfpTzx4ROeXhs8/h/Q8SvRpJkrQhjF2SJCnjjHgj8MZIKJcF//5XRKVKhi6trnatiK5Hx8cPPhQoKHC6S5KkVGHskiRJGeXX6YHb71q5T9epEbvuYujS2p3YPaJyZfjhRxg2ItGrkSRJxWXskiRJGSM/P3DdDYHFi2G3JnBS90SvSMmsSuWIk0+MY+gjjwaWLXO6S5KkVGDskiRJGePJp+HLr6BSJbjqnxHlyjnVpb93VBeoVQt+nwUvvZLo1UiSpOIwdkmSpIww8dtAvyfjyZxLLoqoU8fQpfXLzY3ocWp8X3m6f2DRIqe7JElKdsYuSZKU9lasCNx8S6CgENq2hoPbGrpUfB0Ohvr1YN58eO6FRK9GkiStj7FLkiSlvSefDnz/A1SrBhdeYOjShsnOjujZI77fDBgYmDfP6S5JkpKZsUuSJKW1yZMDTz4dH190YUReNWOXNlzrA2GHBrB4MfR/1tglSVIyM3ZJkqS0lZ8fuOmWQEEBHHQAtDnI0KWNk5UVccbp8f3nxZdg1myDlyRJycrYJUmS0tbTz8Dk76BqlXiqS9oULfeBXXeBZcvgyaeMXZIkJStjlyRJSks//hR4YuWrL154QcQWWxi7tGmi6M/prkGDYfp0g5ckScnI2CVJktJOCIHb7wzk58N++0K7NolekdJFsz0imu8J+fnweD9jlyRJycjYJUmS0s7QYfD5BKhQAf5xQUQUOdWlkrNqumvYCJgyxeAlSVKyMXZJkqS0Mndu4P4H4gDR49SI2rUMXSpZO+8Usf9+UFgIjzxu7JIkKdkYuyRJUlp54KHAvPnQYHs4tmuiV6N0dXrPiCiCN9+CSZMNXpIkJRNjlyRJShufTwgMGRofX3JRRHa2U10qHQ22j2jXNj5++FFjlyRJycTYJUmS0sKKFfGm9ACHHwZNdjV0qXT1PDWiXBa8/wFM+MLgJUlSsjB2SZKktPD8i/DjT1CtKpx1hqFLpW/rrSM6dYqPH3okEILBS5KkZGDskiRJKW/27MATT8ah4awzI6pUMXapbJx6ckT58vDZ5/DxJ4lejSRJAmOXJElKAw89Gli8GHbaEQ7pkOjVKJPUqhlx5BHxsdNdkiQlB2OXJElKaRMnBoa+Hh9fcF5EVpZTXSpbJ3WPqFgBvpkI745N9GokSZKxS5IkpawQAnf/NxACdDgYdt3F0KWyl5cX0bVrfPzIY4HCQqe7JElKJGOXJElKWW+Mgi+/gooV4Ew3pVcCnXBcxOaV4PsfYNSbiV6NJEmZzdglSZJS0pIlgQcejCdoTjoxokYNY5cSp0rliBOOj++Djz4eyM93ukuSpEQxdkmSpJT09DOB32dBndpw3DGJXo0ExxwN1arB1KkwbHiiVyNJUuYydkmSpJQzfXpgwLPx8blnR+TmOtWlxNtss4iTusf3xcefDCxf7nSXJEmJYOySJEkp574HAstXwJ7N4ID9E70a6U9dOkONLeG332DQ4ESvRpKkzGTskiRJKWX8p4G33oasLDj/3IgocqpLySM3N+KUk+P75JNPBZYscbpLkqSyZuySJEkpo6AgcM+9cTzo0hkabG/oUvI5rBNstRX8MQdefDnRq5EkKfMYuyRJUsoYPgK++x42rwQ9TzN0KTllZ0f0ODW+f/YfEFi40OkuSZLKkrFLkiSlhKVLAw89GkeDk0+KqFrV2KXkdXBb2HZbWLAABj5v7JIkqSwZuyRJUkp49jmYNQvq1Iajj0z0aqS/V65cxOkrpw+ffQ7mzjV4SZJUVoxdkiQp6c2eHej/TBwLeveKyM11qkvJ78ADoFEjWLIkPp1RkiSVDWOXJElKeo89EViyFHbaCdq2SfRqpOKJoohePeMw++LLMGuWwUuSpLJg7JIkSUntx58Cg4fEx+eeFRFFTnUpdezTAprsCsuXQ7+njV2SJJUFY5ckSUpqD/QNFBTCAftD090MXUotURRxxunx/fa1wTB9usFLkqTSZuySJElJ65Pxgffeh3Ll4MwzDF1KTXvsHrFXc8jPh8f7GbskSSpt2YlegCRJ0toUFgbueyAOA106Q/16xq5UM3fuXMaMGcPXX3/N119/zQ8//EBBQQHXX389Bx988AZ9rsLCQiZMmMA777zDp59+yvTp01m4cCE1a9akRYsWnHTSSWy11ValdEs2Xa+eER99HBg2ArqfENhmG+/PkiSVFmOXJElKSiNGwqTJUKkSnHqKYSAVff7559x8880l8rmmTZvGmWeeCUCNGjVo0qQJURTx9ddf8/LLLzN8+HDuvPNOdt999xK5vpK2804R++8XeGcsPPpE4Lp/e5+WJKm0GLskSVLSWbYs8NDD8VTXSd0j8qoZBlLRFltswdFHH81OO+3EzjvvzFNPPcXrr7++UZ8riiL22WcfTjnlFPbYY4+iy5cvX84tt9zCkCFDuOaaa3jhhRfIzk7Oh7in94x4973A6DfhpG6Bhg29X0uSVBqS85GAJEnKaM+9ADN/h1q14JijE70abawmTZrQpEmTov/elFfS3Hrrrbn77rvXuDwnJ4fLLruMMWPGMGPGDCZMmECzZs02+npKU4PtI9q2CYwcBQ8/Frj1ZmOXJEmlwdglSZKSypw5gaf6x1NdvU+PyM1NniDw66+/ctRRR7HHHntw55130rdvX0aPHs28efPYZptt6NWrF/vvvz8Ao0aNon///vzwww9UrFiRdu3acc4551ChQoXVPufixYsZMGAAo0ePZurUqZQrV47GjRtz/PHHc+CBB66xhrFjx/Lmm2/yxRdf8Pvvv1NYWMjWW29Nu3bt6NatGzk5Oau9/+DBg7nhhhvo2bMnhx9+OPfffz/jxo1jyZIlbLfddvTs2bNozakqNzeX+vXr8/XXXzNr1qxEL+dv9Twt4s034xde+PKrwK67JM/9W5KkdOGrMUqSpKTyeL/A4sXQuBG0a5vo1axdfn4+5557LsOGDaNhw4Y0bdqU7777jssvv5xx48YxYMAArr76asqVK8fee+9NYWEhzz//PDfddNNqn2f27Nn07NmThx9+mPnz59OiRQt22WUXJk6cSJ8+fXjyySfXuO4bb7yR0aNHs/nmm9OyZUt23313Zs6cyYMPPshFF11EQUHBWtc8ffp0TjvtNCZMmEDTpk1p1KhR0fV8+OGHpfLvVFYKCgqYPn06ANWrV0/wav5eva0jDukYHz/8qK/MKElSaXCyS5IkJY2ffw68Oig+PuesiKys5Jx6+eKLL2jWrBnPPfccVapUIS8vj6eeeoobbriBW2+9lfnz53PfffcVbZb++++/c/LJJzNixAh69+5N3bp1Abjhhhv48ccfOfHEEznzzDOL9pqaNm0aF1xwAX379qVly5Y0bNiw6Lr79OlDixYtqFixYtFlixYt4uqrr2bs2LEMHz6cTp06rbHmoUOHcswxx3DBBRcUXc/AgQO56667ePzxx9l7771Xe/8uXbowY8aMDfp3eemllxLyiohvvPEGc+bMIS8vb7XTJpPVqadEDH8j8Ml4+GR8YM9myXk/lyQpVRm7JElS0njokUBBIey3LzTbI3kDQLly5bjiiiuoUqVK0WWdOnXivvvuY+rUqfTs2XO1VwWsUaMGHTp04Nlnn+XTTz+lbt26TJo0iffff58mTZpwzjnnrLafVd26dTn//PO57LLLGDRoEBdffHHR29Z2amOlSpW48MILGTt2LG+//fZaY1fdunVXC10ARx99NI8++ihffvklK1asoHz58kVva9OmDXPnzt2gf5fNNttsg96/JPz2229Fe3n16tVrjdM4k1HtWhFHHB544aX4Pv/gfZu2n5kkSVqdsUuSJCWFr74OvPU2ZGVB717J/cS/Tp061KtXb7XLsrKyqF27NnPmzGGvvfZa42O23nprID51EWDcuHEAHHDAAWsNHU2bNgXgm2++WeNtP//8M++//z6//PILS5cupbCwsOhtv/zyy1rX3KxZszVepTA7O5utttqKiRMnMm/ePLbccsuit51//vlr/TzJZMmSJfTp04e5c+dy4IEHctRRRyV6ScV2UveI14YEvvoa3ns/DrySJKlkGLskSVLChRB48KF4/6KO7WH77ZI7dtWoUWOtl6/afL5mzZrrfNvy5csBivaYuu+++7jvvvvWeV1/na4KIXDPPffw7LPPEsLa93tavHjxWi9f25qAotMhV60rVeTn53PFFVcwceJEmjZtyrXXXpvoJW2Q6tUjuh4V6D8g3rur5T4k7Wm7kiSlGmOXJElKuA/HwaefQU556HFaZjzhXzWNtfvuu//tPlfVqlUrOh45ciQDBgygZs2aXHjhhTRp0oS8vDyys7NZsWIF+++//zoj2Ia65557Nvg0xvPPP3+19ZaWwsJC/v3vf/PBBx/QsGFDbr/99jVe5TIVdD8h4pVBge++hzfHQNvWiV6RJEnpwdglSZISqrDwz6muo46M9zPKBKumw1q3bs1xxx1XrI956623ALjsssto1arVam+bNm1aia5v9OjRG7xB/emnn14mseu2225j1KhR1K9fn//7v/+jcuXKpX6dpaFKlYjjj4VHHw88+ljgwP0hOzsz7v+SJJUmY5ckSUqokaPgu+9h80rxPkaZokWLFjz00EO8/fbbxY5dCxYsAKBWrVprvG3UqFElur5XXnmlRD9fSXnggQd4+eWXqV27Nvfccw9bbLFFope0SY7tCi+8CD//AiPegE6HJHpFkiSlvqxEL0CSJGWu5csDDz8aT3V17xZRtWrmxK5dd92V5s2b88knn3D33XevsddWYWEhH374IZ999lnRZfXr1wfiEPXX0xU/++wz+vfvXybrLm0zZ87kuOOOW2sAfOaZZ+jXrx/Vq1fnnnvuoXbt2glYYcmqVCmie7f4fv94v8CKFSVzGqokSZnMyS5JkpQwr74G02dA9epwzNGJXk3Zu/baa7ngggt49tlnGTp0KI0aNaJatWr8/vvv/Pzzz8yZM4cLL7yQ3XffHYBjjz2WIUOG8OKLLzJ+/Hh22GEHfv/9dz7//HO6deuWlMGrZ8+eRcerTrXs27cvzz77LACNGzfmsssuK3qf/Px8pkyZssbnmTRpEv/9738B2GqrrXjiiSfWen2dO3cu+vdKFUcfCQOfj78XXhsCR3VJ9IokSUptxi5JkpQQixYF+j0ZT7H0ODWiQoXMmepapXr16jzyyCO8/PLLjBw5kq+//pr8/HyqV69Oo0aN2H///WnXrl3R+9evX5/HHnuM++67j6+++op33nmH+vXr06dPH7p06ZKUseurr75a47KpU6cydepUAHJycor1eRYsWFA0zfbFF1/wxRdfrPX9mjVrlnKxKzc34pST4M67A/2eCnTqSEZ+P0iSVFKiUMyX7JkzZ05pr6VM5eXlpd1tUubxfqx04P04cz36eCGP94N69eCpx6OU3pjb+7E21YoVgW4nBabPgLPPjOh2fNl/P3g/Vjrwfqx04P347+Xl5a33fdyzS5Iklbk//gg8OzA+7n16aocuqSSULx9x2inx98HTzwQWLXLvLkmSNpaxS5Iklbl+TwWWLIWddoIDD0j0aqTk0P5gqF8P5s+P9/CSJEkbx9glSZLK1IwZgVdfi4/P7BURRU51SQDZ2RE9e8TfD88+F5g3z+kuSZI2hrFLkiSVqX5PBfLzYc9msGczQ5f0V60PhB0awOLF0P9ZY5ckSRvD2CVJksrM1KmBoa/Hx6f3MHRJ/ysrK6JXz/h748WXYNZsg5ckSRvK2CVJksrM4/0CBYXQch9osquxS1qbfVvCLjvDsmXw1NPGLkmSNpSxS5IklYkffwqMGBkf9zzN0CWtSxRFnHF6/D3y6mvxPneSJKn4jF2SJKlMPPp4IIT41Rd3bGzskv7Ons0i9mwG+fnw+JPGLkmSNoSxS5IklbpJkwNvjYEogp6nGrqk4li1d9ewYfDzLwYvSZKKy9glSZJK3SOPxU/U27WF7bc3dknFsesuEfu2hILCeDJSkiQVj7FLkiSVqi+/Crz3PpTLgtNOMXRJG6LXylctHTU6npCUJEnrZ+ySJEmlatVUV8eOUL+esUvaEA0bRrRrGx8/+JCxS5Kk4jB2SZKkUjP+08DHn0B2Npx6kqFL2hhnnB6RnQ3jPoKPPjZ4SZK0PsYuSZJUKkIIRVNdhx8GdeoYu6SNsVWdiCOPiI8f6BsoLDR4SZL0d4xdkiSpVIz7CCZ8ATk5cMqJhi5pU5x8UsRmm8GkyTDqzUSvRpKk5GbskiRJJS6EwMOPxtMnR3aBLbc0dkmbIq9aRPcT4u+jhx4JLF/udJckSeti7JIkSSXu3bEw8VuoWAFOPMHQJZWEY7tC9eowfTq8+lqiVyNJUvIydkmSpBJVWPjnXl1dj4a8PGOXVBIqVozocWr8/dTvycCiRU53SZK0NsYuSZJUot5+B77/ASpVghOOM3RJJenQQ6B+PZg7D/oPMHZJkrQ2xi5JklRiQgj0e2rlVNdRUKWKsUsqSdnZEb3PiL+vBj4Ps2YbvCRJ+l/GLkmSVGLGvg+Tv4OKFeHYroYuqTQc0Ap23QWWLYPHnjB2SZL0v4xdkiSpRIQQeKJf/MT7qC5QtaqxSyoNURRxVu/4+2vIEJgyxeAlSdJfGbskSVKJ+HBc/AqMublw/LGGLqk0Nd0totV+UFAIfR8xdkmS9FfGLkmStMn+uldXl86+AqNUFnr3isjKil8U4osvDV6SJK1i7JIkSZts/KfwxZeQUx5OON7QJZWF7baN6NQxPn6gbyAEg5ckSWDskiRJJeCJJ+Mn2YcfBltWN3ZJZaXnaRE5OTDhCxj7XqJXI0lScjB2SZKkTfL5hMCnn0F2NnQ7wdAllaUaNSKO7RofP/hwID/f6S5JkoxdkiRpk6zaq6vTIVCrprFLKmvdT4ioUgV++gmGDU/0aiRJSjxjlyRJ2mhffR0Y9xGUKwcndTN0SYlQuXLEySfG33+PPB5YutTpLklSZjN2SZKkjdZv5V5dHdpDnTrGLilRjuoCtWvBrFnw/IuJXo0kSYll7JIkSRvl20mB9z6ArCw4ubuhS0qknJyIXj3j78P+zwTmzXO6S5KUuYxdkiRpo/QfED+ZbtcGtt7a2CUl2sHtYIcGsHARPNnf2CVJylzGLkmStMGmTQu8NSY+7u5eXVJSyMqKOKt3/P340sswfbrBS5KUmYxdkiRpgz37fKCwEPbZGxpsb+ySkkWLvWDPZrBiBTzymLFLkpSZjF2SJGmDzJkbGDI0Pu52vKFLSiZR9Od014iRMHmywUuSlHmMXZIkaYO89HJg+XLYaUfYY/dEr0bS/9qxcUTbNhACPPCQsUuSlHmMXZIkqdiWLAm8+HJ83O34iChysktKRmf0jMjOhnEfwcefGLwkSZnF2CVJkoptyOswfz7U3QoO2D/Rq5G0LnXrRnTpHB/f3zdQWGjwkiRlDmOXJEkqlvz8wLMD4yfMJxwXUa6cU11SMjvl5IjNNoNJk2DkqESvRpKksmPskiRJxfLmGJjxG1SrBod0TPRqJK1PXrWIE7vFUbrvI4Fly5zukiRlBmOXJElarxACzwyInyh3PSoiN9epLikVHNsVamwJv/1G0X57kiSlO2OXJElar48/gcnfQYUKcOQRiV6NpOKqUCGiV884Tj/5VGDePKe7JEnpz9glSZLWq//Kqa7DDoWqVZ3qklJJh/awQwNYuAieeNLYJUlKf8YuSZL0t76dFPj4EyiXBcd1NXRJqaZcuYhzzoq/d19+FaZNM3hJktKbsUuSJP2tAStfgbFNG6hTx9glpaK9mke02Avy8+HBh41dkqT0ZuySJEnrNHNm4M034+MTjjN0Sans7DMjogjefAu+/MrgJUlKX8YuSZK0Ti+/GigohN2bQqOGxi4ple3QIOKQjvHxfQ8EQjB4SZLSk7FLkiSt1bJlgUGvxcfHHG3oktJBrx4RubnwxZfw9juJXo0kSaXD2CVJktbqjZEwbz7UrgWt9kv0aiSVhBo1Io4/Nj5+4KFAfr7TXZKk9GPskiRJawgh8PyL8ZPgo46MKFfOyS4pXXQ/ISIvD6ZOhVcHJXo1kiSVPGOXJElaw6efwfc/QIUKcNihiV6NpJK02WYRPU6NA/bj/QILFzrdJUlKL8YuSZK0hudfiJ/8dmwPVSo71SWlm8MPhfr1YO486D/A2CVJSi/GLkmStJpfpwfefS8+7urG9FJays6OOKt3/P098Hn4babBS5KUPoxdkiRpNS++HAgBWuwF225j7JLSVav9YPemsHw5PPyosUuSlD6MXZIkqcjixYEhQ+LjY5zqktJaFEWcc1b8fT58BHwzMT/BK5IkqWQYuyRJUpHXh8PCRbD11rB3i0SvRlJp22nHiLZtIAS4467FhOCElyQp9Rm7JEkSAIWFgRdfip/odj0qIivLyS4pE/TuFVG+PLz/wQo+HJfo1UiStOmMXZIkCYBxH8HPv0ClStCpY6JXI6msbFUn4qgj4+P7HwwUFDjdJUlKbcYuSZIEwPMvxk9wDz0ENtvMqS4pk5xyYkSVKhE//AivD0v0aiRJ2jTGLkmSxM+/BD4cB1EERx9p6JIyTZUqEb17VQTg4ccCS5Y43SVJSl3GLkmSxKuD4ie2LfeGunWNXVIm6nZ8BerUgdmzYeDziV6NJEkbz9glSVKGW7YsMHTlaUtdjjB0SZkqJyei9+nxz4D+AwJ//OF0lyQpNRm7JEnKcKNGw4IFULsW7N0i0auRlEht28BOO8KSJfDYE8YuSVJqMnZJkpThXl55CuMRnSPKlXOyS8pkURRxzlnxz4HXBsNPUwxekqTUY+ySJCmDfTsp8M03kJ0Nh3VK9GokJYPdm0bsvx8UFMIDfY1dkqTUY+ySJCmDvfJq/ET2wAMgL8+pLkmxs3pHlMuCse/Bp58ZvCRJqcXYJUlShlq4MPDGqPj4SDeml/QX9etHHH54fHzfA4HCQoOXJCl1GLskScpQw0bA0qWw3bbQdLdEr0ZSsulxSkTFijDxWxj1ZqJXI0lS8Rm7JEnKQCGEolMYu3SOiCInuyStbostIrqfEP9s6PtQYNkyp7skSanB2CVJUgb67HP4aQpUqAAd2id6NZKS1fHHwpZbwozf4MWXE70aSZKKx9glSVIGennlVNfB7WDzzZ3qkrR2FSpE9OoZ/4x48unA/PlOd0mSkp+xS5KkDDN7dmDM2/GxG9NLWp+O7aHB9rBwIfR7ytglSUp+xi5JkjLM4KFQUAA77wSNGhq7JP29cuUizj4z/lnx4ssw7VeDlyQpuRm7JEnKIAUFgUGD4yeqTnVJKq69W0Ts1Rzy86Hvw8YuSVJyM3ZJkpRB3v8QfvsNKleGNq0TvRpJqeTsMyOiCEa/CV99bfCSJCUvY5ckSRnktZVTXZ0OgdxcJ7skFV/DHSIO6RAf3/dAIASDlyQpORm7JEnKELNmBd7/ID7ufKihS9KGO71HRG4uTPgC3nk30auRJGntjF2SJGWI14dDYSE02RW22cbYJWnD1awZcewx8fEDDwXy853ukiQlH2OXJEkZIITA4CHxk9LDnOqStAlOPCGiWjX45Rd49bVEr0aSpDUZuyRJygCffgbTfoWKFaH1gYlejaRUVqlSRI9T42j++BOBxYud7pIkJRdjlyRJGWDI0PjJaLu2sNlmTnZJ2jSdD4N69WDuPHjuhUSvRpKk1Rm7JElKcwsWBN4cEx8f1snQJWnTZWdH9Fw53TVgYGD+fKe7JEnJw9glSVKae2MULF8O228HO++U6NVIShdtWkOD7WHRojh4SZKULIxdkiSlucErT2E8rFNEFDnZJalkZGVFnN4j/pny/Ivwxx8GL0lScjB2SZKUxiZNDkyaBNnZ0P7gRK9GUrpptR/stCMsXQpPP2PskiQlB2OXJElpbPCQ+MnnAftDtWpOdUkqWVEU0atn/LPllVdh5kyDlyQp8YxdkiSlqWXLAiNGxsduTC+ptOzVHHZvCstXQL+njF2SpMQzdkmSlKbGvA0LF0LtWtB8z0SvRlK6+ut01+ChMG2awUuSlFjGLkmS0tSqjek7HRKRleVkl6TS03S3iBZ7QUEB9Hva2CVJSixjlyRJaWjatMD4TyGKoNMhiV6NpEzQ49Q4qg8fDtN+NXhJkhLH2CVJUhoa/Hr8RHOv5lC7llNdkkrfrrusnO4qhKec7pIkJZCxS5KkNJOfH3h9WHx82KGGLkllZ9V01+vDYfp0g5ckKTGMXZIkpZlxH8GsWVC1CrTaN9GrkZRJdt0lYq/m8d5dT/Y3dkmSEsPYJUlSmnltSPwEs2MHyMlxsktS2TrtlPjnztDXYcYMg5ckqewZuyRJSiN//BF47/34+NBOhi5JZW+3JhF7Nounu55yukuSlADGLkmS0siwEfETzF12hu23M3ZJSoxVe3cNeR1m/GbwkiSVLWOXJElpIoRQdArjYU51SUqgprtFNNsD8vOh/wBjlySpbBm7JElKExO+gF9+gYoVoG2bRK9GUqY79eSV011D41OsJUkqK8YuSZLSxJCh8ZPJNm1gs82c7JKUWHvsDjvvBMuXw/MvGbskSWXH2CVJUhpYtCgw+q342FMYJSWDKIo4sVv88+jll+OfU5IklQVjlyRJaWDkaFi6FLbdBnbdJdGrkaRYq/1gm/qwcBG8+lqiVyNJyhTGLkmS0sDglRvTH9opIoqc7JKUHLKyIrqfEP9MGvhcYNkyp7skSaXP2CVJUor7/ofANxOhXDno2D7Rq5Gk1R3cDmrWgNl/wPA3Er0aSVImMHZJkpTiVk11tdoP8vKc6pKUXMqXjzj+2Phn0zMDAgUFTndJkkqXsUuSpBS2fHkompQ47FBDl6TkdPhhUKUKTJ0GY95J9GokSenO2CVJUgp7ZyzMnx+fItSieaJXI0lrV7FiRNej4iD/9DOBEJzukiSVHmOXJEkpbMjQ+AnjIR2hXDknuyQlr6OPhNxcmDQJPvs80auRJKUzY5ckSSlqxozARx/Hx50OMXRJSm5Vq0Yc0iE+fu55J7skSaXH2CVJUooa8nogBNizGdTdytglKfkd2zX+WfXuezB1qsFLklQ6jF2SJKWggoLA0GHx8aGdDF2SUkP9+hH77gMhwPMvGrskSaXD2CVJUgr6ZDz89htsvjkcuH+iVyNJxXfsMXGgH/I6zF9g8JIklTxjlyRJKWjwyo3p27eD3FwnuySljj2bQYMGsHQpDHot0auRJKUjY5ckSSlm3rzAO+/Gx4cdauiSlFqiKOL4ldNdL74UyM93ukuSVLKMXZIkpZjhb8CKFdCoETRqaOySlHratoEt8uD3WTD6rUSvRpKUboxdkiSlkBACg4fEUxCHuTG9pBSVkxNx1JHxz7CBzwVCcLpLklRyjF2SJKWQbybCDz9CTg4c3DbRq5Gkjdelc/yz7NtJ8OVXiV6NJCmdGLskSUohqzamP+gAqFzZyS5JqatatYh2K6P9iy872SVJKjnGLkmSUsSSJYGRo+JjN6aXlA6OXnkq41tjYPZsg5ckqWQYuyRJShFvjYHFi2GrrWD3polejSRtusaNInbZGfLz4bUhiV6NJCldGLskSUoRq05hPPSQiKwsJ7skpYdV012vDgrk5zvdJUnadMYuSZJSwM+/BD6fAFlZ0KljolcjSSXnoAOhWjX4fRa8OzbRq5EkpQNjlyRJKWDIyqmuvVtAjRpOdUlKHzk5EZ0Pi4/dqF6SVBKMXZIkJbn8/MDrw+JjN6aXlI6O6ByRlQWffgY//GjwkiRtGmOXJElJ7v0P4I85kJcH+7VM9GokqeTVqhmxf6v4+KVXjF2SpE1j7JIkKcmt2pi+Y3vIznayS1J6OqpL/PNt+HBYuNDgJUnaeMYuSZKS2KzZgQ8+iI8P62TokpS+mu0B224DS5bC8DcSvRpJUiozdkmSlMReHwYFhdBkV9hmG2OXpPQVRRGdD49/zr02OBCC012SpI1j7JIkKUmFEBjyevxk71CnuiRlgI7tIac8fPc9TPw20auRJKUqY5ckSUnq8wkwdSpUrAhtDkr0aiSp9FWpEnHQgfHxoNec7JIkbRxjlyRJSeq1IfETvbatYbPNnOySlBlWnco4chQsXmzwkiRtOGOXJElJaP78wJtvxceHHWrokpQ5mu4G9evFG9WPHJ3o1UiSUpGxS5KkJDRsOCxfDjs0gF12TvRqJKnsRFFUFPk9lVGStDGMXZIkJZkQAq8Mip/gdekcEUVOdknKLId0hOzseJP6SZMNXpKkDWPskiQpyXz2Ofz8C1SsAAe3S/RqJKns5VWLOGD/+HjQYGOXJGnDGLskSUoyq6a6Dj4YKlVyqktSZup8WPzz742RsGSJwUuSVHzGLkmSksicOYExb8fHXTobuiRlrmZ7wFZbwaJFMPqtRK9GkpRKjF2SJCWRIa9Dfj7stCM0amjskpS5srIiDl+5Uf2QoU52SZKKz9glSVKSKCwMRXvTHOFUlyRxSAfIyoIJX8DPvxi8JEnFY+ySJClJfPwJ/PorbF4J2rZO9GokKfG23DJinxbx8dDXjV2SpOIxdkmSlCRWbUzfsQNUrOhklyQBHNop/nn4+nDIzzd4SZLWz9glSVISmDUrMHZsfNz5cEOXJK2yb0uoVhVmz4ZxHyV6NZKkVGDskiQpCQweCgWFsFsT2H47Y5ckrVK+fESH9vHxEE9llCQVg7FLkqQEKyj4c2P6Lm5ML0lrOPSQ+Gfju2NhzlyDlyTp7xm7JElKsA8+hJkzoWoVOPCARK9GkpLP9ttH7LQjFBTAiDcSvRpJUrIzdkmSlGCvrtyY/pCOkJvrZJckrc2q6a7BQwIhON0lSVo3Y5ckSQk0fXrg/Q/jYzeml6R1a9sGcnLgx59g4reJXo0kKZkZuyRJSqCXXw2EAM33hPr1jF2StC6VK0cctPJU78FDnOySJK2bsUuSpARZujTw2pD4uOtRhi5JWp9DO8U/K0eNhmXLDF6SpLUzdkmSlCAjR8GCBVCnNrTcJ9GrkaTkt8fuULMmLFwEY99P9GokScnK2CVJUgKEEHjhpXgq4cguEeXKOdklSeuTlRXRoX18PGy4k12SpLUzdkmSlAATvoDvvofcXDisU6JXI0mpo+PB8R8HPvwQ5swxeEmS1mTskiQpAV58OX6C1r4dVKniVJckFdc220TstBMUFMIboxK9GklSMjJ2SZJUxn7/PTBmTHx8tBvTS9IG69g+/tk5bISTXZKkNRm7JEkqY68MChQUwu5NYYcGxi5J2lBtW0N2NkyaBD/8YPCSJK3O2CVJUhlavjwwaHB8fPSRhi5J2hjVqkVFr2I77A1jlyRpdcYuSZLK0Kg3Yc4cqFkD9m+V6NVIUurq2CH+g8GIN6CgwOAlSfqTsUuSpDISQuDZgfETsiO7RGRnO9klSRur5d5QpQrMmgWfjE/0aiRJycTYJUlSGfnoY/j+B6hYEbp0TvRqJCm15eREtG0THw8b7mSXJOlPxi5JksrIgJVTXYcfCpUrO9UlSZtq1asyjnkHFi82eEmSYsYuSZLKwOTvAh99DOWy4JijDV2SVBJ23gnq14Nly+CtMYlejSQpWRi7JEkqA88+F08cHHQQ1Klj7JKkkhBFUdFG9cNGONklSYoZuyRJKmUzZwZGjoqPTzjW0CVJJan9wfH/j/8UZswweEmSjF2SJJW6F14OFBTAHrvDjjsauySpJNWuFdFsj/h4xMjErkWSlByMXZIklaJFiwKvDoqPj3eqS5JKxaqN6ocND4TgdJckZTpjlyRJpei1IbBoEWxTH1ruk+jVSFJ6OuhAqFABfv4FvpmY6NVIkhLN2CVJUilZvjwUbUx//LERWVlOdklSadhss4j9W8XHw92oXpIynrFLkqRSMmwEzJoFNWtAxw6JXo0kpbcOB8d/UBg1GvLzDV6SlMmMXZIklYL8/MDTz6yc6jouonx5p7okqTQ13xO2yIO58+DDcYlejSQpkYxdkiSVgtFvwa+/QrWqcPihiV6NJKW/7OyIdm3j4+FvONklSZnM2CVJUgkrLAw83T9+onVM14iKFZ3qkqSy0GHlqzK++y4sXGjwkqRMZeySJKmEjX0PfvgRKlWCo7okejWSlDkaNYRtt4XlK+CtMYlejSQpUYxdkiSVoBACT66c6jqqC1Su7FSXJJWVKIqKNqr3VEZJylzGLkmSStAn4+GbbyAnB47tauiSpLJ2cLv4/z/9DGb8ZvCSpExk7JIkqQQ9+XT8xKrzYZCXZ+ySpLJWu1bEHrvHx2+MTOhSJEkJYuySJKmEjP80MP5TKF8eTjje0CVJibJqo/rhIwIhON0lSZnG2CVJUgkIIfDYE/ETqsMOhVo1jV2SlCgHHRCfTv7TFJg0OdGrkSSVNWOXJEkl4JPx8NnnkFMeTupm6JKkRNp884hW+8XHw0c42SVJmcbYJUnSJgoh8OjjK/fq6gw1neqSpIRb9aqMI0dBfr7BS5IyibFLkqRN9NHH8MWX8SkzJzrVJUlJYe8WUK0q/DEHPvok0auRJJUlY5ckSZsghMAjj8UTA0ceAVtWN3ZJUjLIzo5o2yY+HvGGk12SlEmMXZIkbYIPPoSvv4HcXOh+gqFLkpLJqldlfPsdWLzY4CVJmcLYJUnSRvrrXl1HdYEttjB2SVIy2WlHqFcPli2DMW8nejWSpLJi7JIkaSONeRsmfgsVK0C34w1dkpRsoigq2qh+mK/KKEkZw9glSdJGyM8P9H0kfuJ0/HGQl2fskqRk1P7g+P/Hfwq//27wkqRMYOySJGkjDB4Kv/wC1arB8ccauiQpWW1VJ2K3JhACvDEq0auRJJUFY5ckSRtoyZLA40/E0wGnnhxRqZKxS5KS2aqN6od7KqMkZQRjlyRJG+i5F2D2H1CnDhxxeKJXI0lan9YHQfny8P0P8N33Bi9JSnfGLkmSNsDcuYH+A+InSmecHlG+vFNdkpTsqlSO2LdlfOx0lySlP2OXJEkb4Kn+gcWLoVFDaNs60auRJBXXqldlfGMUFBQYvCQpnRm7JEkqpunTAy+9Eh+f1TsiK8upLklKFS33gSpVYNas+JUZJUnpy9glSVIx3d83sGIFNN8T9mpu6JKkVFK+fESblRO5w99wskuS0pmxS5KkYvjs88Cbb0FWFpx7tqFLklLRqlMZx4yJX1lXkpSejF2SJK1HQUHgnnvjJ0WHHwo7NDB2SVIq2nUXqLsVLFkK77yb6NVIkkqLsUuSpPV4fThMmgyVKsHpPQ1dkpSqoiii/cHx8TBflVGS0paxS5Kkv7FoUeChh+MnRKeeHJFXzdglSams/cpTGT/+BGbPNnhJUjoydkmS9DeefDrwxxzYemvoelSiVyNJ2lT1to7YZWcoLISRoxO9GklSaTB2SZK0DtN+DTz3Qnx87tkR5cs71SVJ6aBD+/jn+XBPZZSktGTskiRpHe69P7BiBTTfE/ZrmejVSJJKStvWUK5cvB/jDz8avCQp3Ri7JElaiw8+DLzzbvxk6PxzI6LIqS5JShdVq0a03Cc+HvGGsUuS0o2xS5Kk/7F8eeDu/8ZPfroeDdtvZ+iSpHTTYeVG9SNGQmGhwUuS0omxS5Kk/zHweZg6FbbIgx6nGLokKR3t2xI2rwQzZ8Jnnyd6NZKkkmTskiTpL2bODPR7Kv4L/9lnRVSqZOySpHSUmxvRunV8PMyN6iUprRi7JEn6i/seCCxdCk12hQ4HJ3o1kqTStOpUxrfGwLJlBi9JShfGLkmSVhr/aWDUm5CVBRdd4Kb0kpTudmsCtWvB4sXw7thEr0aSVFKMXZIkAStWBO68O/6rfpfO0LChoUuS0l1WVkT7lVO8wz2VUZLShrFLkiRgwED4aQrk5cHpPQ1dkpQpVp3K+OE4mDPH4CVJ6cDYJUnKeNOmBZ54Mn6Cc97ZEVUqG7skKVNss03Ejo2hoBBGvZno1UiSSoKxS5KU0UII3HF3YPlyaL4nHNwu0SuSJJW1Du3jP3J4KqMkpQdjlyQpo41+E8Z9BDnl4eJ/uCm9JGWidm2gXBZ8MxF+/tngJUmpztglScpYCxYE7rk3flJzYveIelsbuiQpE+XlRezdIj4e5nSXJKU8Y5ckKWM99Ghg9h9Qrx6c2C3Rq5EkJVL7lRvVvzESCgsNXpKUyoxdkqSM9PU3gVdejY8vvSgiJ8epLknKZPu3gs02g+kz4LPPE70aSdKmMHZJkjJOfn7gtjsCIUCH9tBsD0OXJGW63NyIdm3j48FDnOySpFRm7JIkZZwXX4bJ30HlynDuWYYuSVLs8EPj3wlvvQ3zFxi8JClVGbskSRnlt5mBRx6Nn8Cc3TsiL8/YJUmK7dgYGmwPy5fHe3dJklKTsUuSlDFCCNx5d2DJUmiyKxzaKdErkiQlkyiKOGzldNeQoU52SVKqMnZJkjLGmLdh7HuQnQ2XXRKRleVUlyRpde3bQfnyMGkyfDvJ4CVJqcjYJUnKCAsXBu66J37ScmI32G5bQ5ckaU1Vq0YcsH98PNjpLklKScYuSVJGePDhwOzZUK8enNTd0CVJWrfDOsW/J954A5YtM3hJUqoxdkmS0t4XXwZeHRQfX3pRRG6usUuStG57NoM6tWHhInhrTKJXI0naUMYuSVJaW7EicOvtgRCg0yHQbA9DlyTp72VlRRy6crrrtSFOdklSqjF2SZLS2oCB8ONPUK0anHOmoUuSVDyHdISsLPjsc/hlqsFLklKJsUuSlLZ+mRp4ol/8BOX8cyKqVjV2SZKKp1bNiBZ7xcdD3KheklKKsUuSlJZCCNx+Z2D5CmixFxzcLtErkiSlmsMPjf9I8vowyM83eElSqjB2SZLS0rAR8Ml4yM2Fi/8REUVOdUmSNsy+LePT4Gf/AR98mOjVSJKKy9glSUo7c+cG7r0v/gv8aadE1N3K0CVJ2nDly0cc0iE+dqN6SUodxi5JUtq594HAvPnQoAEcf2yiVyNJSmWHrXxVxg8+gFmzDF6SlAqMXZKktPLxJ4FhwyGK4LKLI7KzneqSJG28bbaJaLIrFBTCkNcTvRpJUnEYuyRJaWPZssBtd8R/dT+qC+yys6FLkrTpOh8e/z4ZNDhQUOB0lyQlO2OXJCltPPFUYNqvUGNLOON0Q5ckqWS0OQiqVIHffoP33ahekpKesUuSlBZ++CHwzID4+B8XRFSqZOySJJWM3NyIwzrFxy+/4mSXJCU7Y5ckKeUVFgZuvSNQUAD7t4ID9jd0SZJK1hGHR0QRfDgOpk0zeElSMjN2SZJS3quvwZdfwWabwT/ON3RJkkpe3boRLfaKj199zdglScnM2CVJSmmzZgUefCh+0tH79IiaNY1dkqTScWSX+HfM4KHxi6JIkpKTsUuSlNLu/m9g0SLYeSfockSiVyNJSmct94ZatWD+fBj9VqJXI0laF2OXJCllvf9h4K0xUC4LLr04olw5p7okSaWnXLmILp3j3zVuVC9JycvYJUlKScuWBe76v/iJxjFdoeEOhi5JUuk7rBNkZ8PX38C3kwxekpSMjF2SpJT09DOBX3+FGltCj1MNXZKkspGXF3HQgfGx012SlJyMXZKklPPL1ED/Z+Lj88+N2GwzY5ckqewctXKj+hEjYe5cg5ckJRtjlyQppYQQn764fAW02Iuiv65LklRWmuwKOzaG5cvh1dcSvRpJ0v8ydkmSUspbY2DcR5BTHi66ICKKnOqSJJWtKIo4tmv8++elVwIrVjjdJUnJxNglSUoZixcH7rk3fkLRvRtsvbWhS5KUGK0Pgi23hNmzYfSbiV6NJOmvjF2SpJTx2BOB32dB3a3gxG6GLklS4pQvHxXt3TXwhUAITndJUrIwdkmSUsL3PwSefyE+vvCCiNxcY5ckKbE6HwY5OTBpEkz4ItGrkSStYuySJCW9wsLA7XcGCgrhoAOg5d6GLklS4lWrFtGxQ3z83AtOdklSsjB2SZKS3vA34IsvoWIFOO9cQ5ckKXkcc3T8e+mdd+HX6QYvSUoGxi5JUlJbtCjwwIPxk4dTTo6oVdPYJUlKHtttG9FiLygshBdfNnZJUjIwdkmSktpj/QJ/zIF69eC4YxK9GkmS1nRs1/gPMa8NhoULDV6SlGjGLklS0vppSuCFF+PjC86NKF/eqS5JUvJpsRdsty0sXgwvv5ro1UiSjF2SpKQUQuDuewIFBbD/frCPm9JLkpJUVlZE927x76nnXwgsW+Z0lyQlkrFLkpSUxrwNH38COeXh3HMMXZKk5NauDdSuBX/MgaHDEr0aScpsxi5JUtJZujTw3/vjv4p3OwHqbmXskiQlt+zsiBOOi39fPfNsID/f6S5JShRjlyQp6Tz9TOC336BWLTixm6FLkpQaDu0E1arC9Onw5phEr0aSMpexS5KUVKb9GnhmQHx83tkRFSoYuyRJqaFChYiuR8e/t55+JhCC012SlAjGLklSUrn3vsDyFbBnMzjwgESvRpKkDXPUkVCxInz/PXzwYaJXI0mZydglSUoaH3wYeGcslCsHF54fEUVOdUmSUkuVyhFHHB4fP/2Mk12SlAjGLklSUlixIvB/98ZPCroeDdtta+iSJKWm446JyM6GzyfA5xMMXpJU1oxdkqSk8NwL8MsvsEUe9DjF0CVJSl01akR0OiQ+fvRxY5cklTVjlyQp4X7/PfBEv/jJwFm9IypVMnZJklLbySfG013jP4Xxnxq8JKksGbskSQn3QN/AkqWw6y7QoX2iVyNJ0qarXSvisEPj48ee8JUZJaksGbskSQk14YsVjBgJURRvSp+V5VSXJCk9nNw9onx5+OzzeMJLklQ2jF2SpIQJIXDL7YsB6Ngedmxs6JIkpY+aNSM6HxYfP/KY012SVFaMXZKkhBn9Fnz2WT4VKsAZpxu6JEnp56TuETnl4Ysv4eNPEr0aScoMxi5JUkIsWxZ4sG/8F+5ux0fUqGHskiSlny23jDiic3zsdJcklQ1jlyQpIZ5/EabPgFo1szjhuESvRpKk0nNit4jcXPjqa/hgXKJXI0npz9glSSpzc+YEnnw6/sv2BedvRsWKTnVJktJX9eoRRx4RH/d9KFBY6HSXJJUmY5ckqcw98lhg8WJo3AgOPzQn0cuRJKnUndQ9olIl+O57GDkq0auRpPRm7JIklakffgi8NiQ+Pv/ciKwsp7okSemvatWIE7vFv/MefjSwfLnTXZJUWoxdkqQyE0Lg3gcChYVw0AHQdDdDlyQpcxxzNFSvHu9Z+cqriV6NJKUvY5ckqcx88CGM+wjKl4ezehu6JEmZpUKFiJ6nxb//+j0VWLjQ6S5JKg3GLklSmcjPD9z3QPygvutRULeusUuSlHk6dYRt6sO8+fDMs8YuSSoNxi5JUpkYOgx+mgJVq8DJJxq6JEmZKTs7onev+PfgwOdh1myDlySVNGOXJKnULV0aePTx+MH8KSdHVK5s7JIkZa79W8Guu8CyZRT9fpQklRxjlySp1D33AsyeDXVqQ5fOiV6NJEmJFUVR0d6Vg4fA5MkGL0kqScYuSVKpmjs30H9A/CC+V8+InBynuiRJarpbRNvWEAL8372BEAxeklRSjF2SpFL1VP/AokXQcAdo1zbRq5EkKXmcdWZETg589jm8NSbRq5Gk9GHskiSVmunTAy+9Eh+f1TsiK8upLkmSVqldK6L7CfHxfQ8Eli1zukuSSoKxS5JUah55PLBiBezZDPZqnujVSJKUfLodH1GzBsz4DZ59LtGrkaT0YOySJJWKyd8FRrwRH591RkQUOdUlSdL/qlgx4syVm9U/1T/w++9Od0nSpjJ2SZJKxYMPBUKAtq1hxx0NXZIkrcvBbaHJrrB0KTzQ19glSZvK2CVJKnGfjA98OA7KlYMzTjd0SZL0d6Io4oJzI6IIRoyETz8zeEnSpjB2SZJKVAih6K/SXTpD3brGLkmS1mfHHSM6HxYf33FXYMUKg5ckbSxjlySpRI1+CyZ+CxUrwqknG7okSSqu3mdEVKsGP01xs3pJ2hTGLklSicnPDzz0cPyX6BOOi8jLM3ZJklRcVSpHnHt2/LvziScDv053ukuSNoaxS5JUYgYNhmm/Ql4eHH9solcjSVLq6XAw7LE7LFsGd98TCMHgJUkbytglSSoRixcHHu8XPyA/7ZSIzTZzqkuSpA0VRRGX/CMiOxveex/eeTfRK5Kk1GPskiSViIHPw5w5sHVdijbYlSRJG26bbSK6HR8f331PYPFip7skaUMYuyRJm2zOnMAzz8YPxHudHpGd7VSXtD5ffvkll156KR06dOCAAw7gmGOO4cEHH2Tp0qXF/hznnnsu++yzD/vssw+zZ89e4+3Lli3jtttuo0OHDhx00EFccsklTJ8+fa2fa+HChXTq1Imrrrpqg2/Lr7/+yj777EOXLl3+9v2uu+469tlnHwYPHrzWy1f9r2XLlrRt25YuXbpw8cUX89RTT6319q3v80qp7JSTIrbaCmb+Dn0fNnZJ0oYwdkmSNtkTTwaWLIEdG0PrAxO9Gin5DRs2jN69e/POO+9Qp04dWrZsyfLly3niiSfo1asXixYtWu/nGDx4MB9//DFRtO64fNddd/Hiiy9Su3Ztdt99d8aOHctFF11EQUHBGu/70EMPsXTpUs4777xNum2bYrfddqNTp04ccsgh7L333tSsWZOPP/6Y++67jy5duvDkk0+6f5EyRm5uxKUXxd/fL70Cn0/wvi9JxZWd6AVIklLbtGmBVwbFx2f1jsjKcqpL+jszZ87k5ptvpqCggH/9618cdlh83u/y5cu59tprGTVqFPfeey99+vRZ5+eYM2cO//3vf9l7772ZMmUKM2bMWON9Zs2axWuvvUbLli258847iaKIxx9/nL59+zJmzBjatGlT9L7ff/89L774ImeeeSY1a9Ys+RtdTJ07dy7691hl6dKlDBo0iPvvv5/777+fRYsWcdZZZyVohVLZ2qt5xGGdAoOHwi23BR5/JI5gkqS/52SXJGmTPPRooKAA9m4BezbzAbi0PoMHD2bZsmW0aNFitbCTk5PDJZdcQoUKFXjttdeYN2/eOj/HXXfdxdKlS7n00kvX+T7ff/89BQUFdOrUqWj66/DDDwdg0qRJq73v7bffztZbb80JJ5ywKTetVFSoUIFjjz2WO+64g3LlytGvXz8mT56c6GVJZeacsyKqV4eff6HohWAkSX/P2CVJ2mgTJwZGjYYogjPPMHRJxfHtt98C0KxZszXelpeXx3bbbUd+fj7vvffeWj/+gw8+YMSIEZxyyilsvfXW67yeBQsWAFC5cuWiy1Ydz58/v+iy4cOH8+mnn3LRRReRnZ28Q/977rknBx98MADPPfdcglcjlZ3KleNXZwQY8Cx8O8ngJUnrY+ySJG2UEAIPPBQ/4G7fDhruYOySimPJkiXA6hHqr6pUqQKw1umlpUuXcsstt7DNNttw0kkn/e311K5dG4Bffvml6LKff/55tbctXryYe++9l9atW7P33ntv4C0pe6ti1/jx4xO8Eqls7d8qok1rKCiE/9wayM83eEnS3zF2SZI2ykcfwyfjoXx5OL2HoUsqrmrVqgGsdZ+tv16+tldN7Nu3L9OnT+eyyy6jfPnyf3s9DRs2ZMstt2TAgAF8//33zJ49m/vuu48oimjZsiUAjz76KAsWLOCCCy7YhFtUdho2bAjAtGnTWLFiRYJXI5Wtf5wfUaUKTP4Onuqf6NVIUnJL3ll1SVLSKiwMPNA3/qvykUdAnTrGLqm4mjVrxogRI3jjjTc444wzVotWX375JVOmTAHiqau/mjhxIs899xydOnVizz33XO/15Obmcu6553LttdfSvXv3osuPOuooGjZsyJQpUxg4cCA9e/YsmvSCeHosNzf3b1/lcV1mzJjBPvvss8EfV1yrQiHEp2JWr1691K5LSjZ5eREXng/X3RB44snAvi2hcSN//0rS2hi7JEkbbOTo+C/LlSrBySf6QFvaEB06dOCJJ55gxowZXHrppZx//vnUqlWLCRMmcPPNN1OuXDkKCgpWi00FBQXcfPPNbL755px//vnFvq6OHTtSt25dRo0axfLly2nevDmtW7cG4I477qB27dpFIeyNN97gvvvuY8aMGWy++eZ07dqVM844g6ys4p8IULFixaLPvzYTJkxg6tSpxf58/yuEP0/d2pgYJ6W6g9vC22/DW2/DDTcFHn0IcnL8XpCk/2XskiRtkOXLAw8/Ej/h7H5CRLVqPsiWNkTFihW5/fbbueSSS/jggw/44IMPit5Wu3ZtTjjhBJ5++umivbsAnn32Wb799luuvPLK1aabiqNJkyY0adJktctGjx7NuHHjuOOOO8jJyWHixIlcffXV7L333lx00UWMHz+eJ554gry8PI477rhiX1fVqlW5+uqr1/n26667bpNi119fofKv/z5SpoiiiIsvgs+/CPz4Ezz6eOCs3v4elqT/ZeySJG2QVwbB9BlQvTocc3SiVyOlph122IFnn32W0aNH880331BQUEDDhg1p3749jz/+OADbbbdd0fu/++67RFHE0KFDGTp06Gqf648//gDg8ssvJzs7m969e7P77ruv87qXLl3KPffcQ6tWrdhvv/0AeOaZZ6hYsSI33ngjlSpV4oADDuDbb7+lf//+GxS7StukSZMAqFevXlK/cqRUmvKqRVx6EfzzqsCAgdBqv0CTXQ1ekvRXPkqQJBXbwoWBfk/GU109To2oWNEH19LGqlChAp06daJTp06rXf7RRx8B8d5efxVC4NNPP13n5/viiy+A1aef1qZfv37MmTOHf/zjH0WX/fTTT2y77bZUqlSp6LKdd96ZTz/9lEWLFq12eSK98cYbAMXas0xKZwfsH9GxQ2DYcLjx5sDjj+DvZEn6C2OXJKnYBgwMzJsP9evBoYckejVS+hk/fjzffvst22+/PU2bNi26/IEHHljnx3Tp0oUZM2YwZMiQ9W7YPnXqVPr3789JJ51E3bp1V3vb0qVL//a/E+2TTz5h5MiRRFHEMccck+jlSAl3wbkR48cHpk6DB/oGLrrQ2CVJqxR/x1FJUkabNTsw8Pn4uPcZEdnZPqiWNtakSZPIz89f7bKJEyfy73//O96T5+KLS+V677rrLqpXr85JJ5202uXbb789P/74I99++y0AixYt4t1336V27doJn+patmwZzz//PBdffDEFBQX06NGDBg0aJHRNUjKoXDni8svi38UvvQIffRz+/gMkKYM42SVJKpbHnwgsXQq77AwHtEr0aqTUdtddd/HTTz/RsGFDqlWrxvTp0/nqq6+Ioog+ffqUyml6Y8eOZezYsdxyyy1UqFBhtbd1796dESNGcM4557DnnnsyadIkfvvtN/r06VPi6/g7gwYNYvz48UAcuWbPns3EiRNZunQpOTk5nHvuuUWvHikJWuwV0eWIwCuvws23Bp58DDbf3D9GSZKxS5K0Xj//HBg8JD4+q3dEFPlAWtoUHTt2ZNiwYUyePJkFCxaQl5dHu3btOPHEE2nUqFGJX9/y5cu566672GeffTjwwAPXeHvDhg255ZZb6Nu3L2PHjqV69eqcffbZHHnkkSW+lr8zYcIEJkyYQBRFVKxYkSpVqrDnnnuyxx570KlTJ7bYYosyXY+UCs7uHfHRR4Fpv8Ld/w386wp/R0tSFEIo1rzrnDlzSnstZSovLy/tbpMyj/djlZV/XV3IW2/Dvi3h1ptL9gx478dKB96PlQ68H6euzycEzrswUFgI118T0fqgzA1e3o+VDrwf/728vLz1vo97dkmS/taXXwXeehuysuDMXpn74FmSpGTVdLeI7t3i41vvCPz+u/t3Scpsxi5J0jqFEHjwofgBc8cOsP32xi5JkpJRj1MiGjeCBQvgxv8ECgsNXpIyl7FLkrRO738An30OOeWh52mGLkmSklX58hFXXxmRmwsffwLPv5joFUlS4hi7JElrVVDw51RX16OhVk1jlyRJyWybbSLOOzv+ff3gQ4Hvf3C6S1JmMnZJktZqxBvww4+w+eZwYjdDlyRJqeCIzvELyqxYAddeH1i2zOAlKfMYuyRJa1i2LPDwY/GD45NPjKhSxdglSVIqiKKIKy6LyMuL/2j10CPGLkmZx9glSVrDiy/DzJlQswYcfWSiVyNJkjZEXl7E5ZfGf6ga+Dx89LHBS1JmMXZJklYzf0Hgqf7xg+KePSJyc53qkiQp1ey3b0SXzvHxjf8JzJtn8JKUOYxdkqTV9H8msGABbLctdGyf6NVIkqSNde7ZEfXrwaxZcMvtgRAMXpIyg7FLklRk5sxQ9FLlZ54RUa6cU12SJKWqChUi/n1VRHY2vP0ODBqc6BVJUtkwdkmSijzyeGD5ctitSfxKTpIkKbU1bhTRu1f8x6t77g38NMXpLknpz9glSQLgu+8Drw+Lj88+MyKKnOqSJCkdHHcM7NUcli2Da68PLF9u8JKU3oxdkiQA7n8wEAK0Pgh23cXQJUlSusjKirjyiohqVWHyd9D3EWOXpPRm7JIk8dHHgXEfQXY2nNnL0CVJUrrZsnrE5ZfFv+MHPgfjPjJ4SUpfxi5JynCFhYH7H4wf8HY5AurWNXZJkpSOWu0XcWSX+PiGmwJz5hi8JKUnY5ckZbjhb8SnNFSqBKeeZOiSJCmdnXtWxLbbwh9z4OZbAyEYvCSlH2OXJGWwZcsCDz8aP8g9qXtEtWrGLkmS0llubsQ1V0XklIf33oeXXkn0iiSp5Bm7JCmDPf8izJwJNWvCMUcnejWSJKks7NAg4qwz4z9w3Xd/4IcfnO6SlF6MXZKUoebODTzVP35w26tnRG6uU12SJGWKrkfBPnvD8hVwzfWBZcsMXpLSh7FLkjJUv6cCixbBDg2gw8GJXo0kSSpLURRx5eUReXnww4/wQF9jl6T0YeySpAw0bVrg5Vfj43POisjKcqpLkqRMk5cXBy+AF16C9943eElKD8YuScpAfR8J5OdDi71gr+aGLkmSMtU+e0dF+3bedEtg9myDl6TUZ+ySpAzz1deB0W9CFMHZZxq6JEnKdGeeEdGgAcydCzf+J1BYaPCSlNqMXZKUQUII3PdA/AD2kA7xqzFJkqTMlpsbcc1VETk5MO6j+NWaJSmVGbskKYO8OxYmfAE5OXB6D0OXJEmKbbdtxHnnxI8NHnwoMHmy012SUpexS5IyxIoVgftXvtLSccdAzZrGLkmS9KcunaHVfrBiBVxzfWDpUoOXpNRk7JKkDPHSK/DLL1CtGnQ/wdAlSZJWF0URl18aUb06TPkZ7r3f2CUpNRm7JCkDzJkbePyJ+AFr79MjNt/c2CVJktZUrVrEv66IHye8MgjefsfgJSn1GLskKQM88mhg4SJouAN0OiTRq5EkSclsr+YR3Y6Pj/9zW+D33w1eklKLsUuS0tzk7wKvDYmPLzgvolw5p7okSdLf69UzolEjmD8fbrg5UFho8JKUOoxdkpTGQgjcc2+gsBBaHwS7NzV0SZKk9StfPuKaf0VUqACfjIcBAxO9IkkqPmOXJKWxt9+BTz+DnBw4u7ehS5IkFV/9+hEXnhc/fnjokcDEiU53SUoNxi5JSlPLloWiV1E64TioU8fYJUmSNsyhneCgA6CgAK65IbB4scFLUvIzdklSmnruBZg+A2psCSd2M3RJkqQNF0URl10SUbMGTJ0K/3evsUtS8jN2SVIamjUr8ORT8YPRM8+IqFjR2CVJkjZOlSoRV10ZEUUwZCiMfsvgJSm5GbskKQ31fTiwZCnssjMc3C7Rq5EkSaluj90jTuweH996e2DGbwYvScnL2CVJaearrwOvD4+PLzgvIivLqS5JkrTpep4asdNOsHAh3HBToKDA4CUpORm7JCmN5OcH7rgrfuB5SAfYeSdDlyRJKhnZ2RHX/CuiYkX47HN4+plEr0iS1s7YJUlp5JVBMGkyVK4MZ59p6JIkSSWrbt2Iiy6MH2M89njgy6+c7pKUfIxdkpQmZs0OPPxo/ICzd6+IvDxjlyRJKnkd20O7tlBQCNfdGFi0yOAlKbkYuyQpTdx7f2DRIthpJzj80ESvRpIkpasoirjkHxG1a8Gvv8Kd/2fskpRcjF2SlAY+/iQwchRkZcHFF0aUK+dUlyRJKj2bbx5x9b8isrJg+AgYMdLgJSl5GLskKcUtXx648+74AeaRR8COjQ1dkiSp9O3WJOKUk+LjO+4K/Drd4CUpORi7JCnFPfMs/PwLbJEHvXoauiRJUtk55aSIJrvCokVw3Q2B/HyDl6TEM3ZJUgr7+edAv6fiB5XnnRux+ebGLkmSVHaysyOuvjKiUiX48iuKHpdIUiIZuyQpRRUWBm69I7BiBeyzN7Rrk+gVSZKkTFSnTsQlF8V/cOv3FHw+weAlKbGMXZKUogYPhc8+hwoV4JJ/RESRU12SJCkxDm4b0bEDFBbCtTcE5s0zeElKHGOXJKWgWbMD9z8QP4js1TOidm1DlyRJSqyLLojYemuYORNuuiUQgsFLUmIYuyQpBd19T2DhItixMXQ9KtGrkSRJgs02i7ju3xHly8PY9+D5FxK9IkmZytglSSnm3bGBt8ZAuSzoc2lEuXJOdUmSpOTQqGHEeefEj03u7xv4ZqLTXZLKnrFLklLI/AWB2+6MHzQefxw03MHQJUmSksuRR8BBB0B+Plx9bWDhQoOXpLJl7JKkFHLPvYHZs6FePehxqqFLkiQlnyiK6HNpRJ3aMH06/Oc29++SVLaMXZKUIsa+Fxg2HKIIrrw8IjfX2CVJkpJT5coR1/47olw5eGsMvDIo0SuSlEmMXZKUAuYvCNx6R/wX0eOOgV13MXRJkqTktvNOEWf1jh+z/PfewOTJTndJKhvGLklKAatOX6xfD3r1NHRJkqTUcNwxsG9LWL4Crr4usHixwUtS6TN2SVKSW3X6YlYW/NPTFyVJUgqJoogrL4+oWQN++QVuv9P9uySVPmOXJCWxuXM9fVGSJKW2qlUj/n1VRLksGDEShrye6BVJSnfGLklKUiEEbrktPn1x223g9B6GLkmSlJqa7hZx+sqtGO76v8D3PzjdJan0GLskKUm9+hq8MxbKl4d//8vTFyVJUmrrfgK02AuWLYMrrw4sWmTwklQ6jF2SlISmTAn89774AWDvXhENGxq6JElSasvKirj6yoiaNWHqVLjpFvfvklQ6jF2SlGSWLw9ce0Ng2TLYqzkc2zXRK5IkSSoZ1apF3HBtRHY2jHkbnn0u0SuSlI6MXZKUZB55LDBpMlStAldeHpGV5VSXJElKHzvvFHHBefHjmwf7Bj773OkuSSXL2CVJSeTjTwLPPBsfX9EnYsstDV2SJCn9dOkMHQ6GgkL497WBWbMNXpJKjrFLkpLEvHmBG26OH+h16Qyt9jN0SZKk9BRFEZdcFLH9djD7jzh45ecbvCSVDGOXJCWBEAK33B6YNQu2qQ/nnm3okiRJ6a1ixYgbrovYbDP4fAL0fdjYJalkGLskKQm8Ogjefgeys+HfV0VUqGDskiRJ6a9+vYh/9okf9wwYCG++ZfCStOmMXZKUYJMnB+65N35gd+YZEY0aGrokSVLmOOjAiOOPjY9v+k/gu+8NXpI2jbFLkhJo0aLAVdcGlq+A/faF445J9IokSZLK3plnRDTfE5YshSuuDMyda/CStPGMXZKUICEEbr09MHUq1KoFV14eEUVOdUmSpMyTnR1x3b8jttoKps+Aq92wXtImMHZJUoK8+hqMehPKlYNrr46oUsXQJUmSMleVKhH/uTGiYkUY/ynce7+xS9LGMXZJUgJMnhy4579/7tO16y6GLkmSpO23i7j6yvhx0QsvweAhBi9JG87YJUllbP78wD+v/nOfrlUbskqSJAn2bxVxeo84eN1+V+CLLw1ekjaMsUuSylBBQeDaGwLTp0OdOu7TJUmStDYnnwgHHQD5+XDlVYGZMw1ekorP2CVJZejxfoEPx0FODtx0nft0SZIkrU1WVsQ/L49o0AD+mAP/vCqwbJnBS1LxGLskqYy8+17giSfj4z6XRDRsaOiSJElal802i7j5hoiqVWDit3Dr7YEQDF6S1s/YJUll4JepgetvjB+cdT0KOrQ3dEmSJK3PVnUirr82olwWDH8DBgxM9IokpQJjlySVssWLA1deFVi0CJrsCuecZeiSJEkqrmZ7RJx/bvz46YG+gXffc7pL0t8zdklSKQohcMttgR9+hOpbwPXXRpQvb+ySJEnaEEcdCZ0PhxDg2usCk78zeElaN2OXJJWi516AUW9CuXJx6NqyuqFLkiRpQ0VRxEUXROzZDJYshT5XBGbNNnhJWjtjlySVknEfBe57IH4Qdv45Ebs1MXRJkiRtrOzseP+u+vVg5u9wxZWBpUsNXpLWZOySpFLw8y+Bq68NFBZCp47x6L0kSZI2TZXKEbfeHFGlCnwzEW64OVBYaPCStDpjlySVsPkLAn3+GVi4MN6Q/pKLIqLIqS5JkqSSsPXWETddH5GdDW+NgYcfM3ZJWp2xS5JKUH5+4JrrAr/8AjVrwo3XReTkGLokSZJK0u5NI/pcEj/GeuppeH24wUvSn4xdklSC7n8wMO4jqFAB/nNjxBZbGLokSZJKwyEdI07qHh/fclvg088MXpJixi5JKiGDhwaeeyE+vvLyiEYNDV2SJEmlqVfPiIMOhPx8uOJfge++z0/0kiQlAWOXJJWAzycEbr8z/mtij1MjWh9k6JIkSSptWVkRV/0zYtddYOFCOPOcBcya5YSXlOmMXZK0iWbMCFx5dSA/Hw46EE49OdErkiRJyhy5uRH/uTFi661h+vRCLr08sHixwUvKZMYuSdoEixcH+lwZmDsXGu4Qn76YleVUlyRJUlmqVi3ijlsitsiLmPwd/Ovfgfx8g5eUqYxdkrSRCgsDN9wc+P572CIPbr4xomJFQ5ckSVIi1K0bcf+9VahQAcZ9BLfeEQjB4CVlImOXJG2khx8NvP0OlC8PN90QUbuWoUuSJCmRmuyazbVXR2RlwdDX4fF+iV6RpEQwdknSRhg8JPBU//j4sksidt3F0CVJkpQM9ts34qIL48dmjz0RGDzU6S4p0xi7JGkDffRx4LaVr7x46slwSAdDlyRJUjLp0jnipO7x8W23Bz4cZ/CSMomxS5I2wA8/Bv7170BBARzcDnqeZuiSJElKRmecHtG+HRQUxhvWT5ps8JIyhbFLkorpjz8Cl10eWLQIdmsCl18aEUXGLkmSpGQURRFX9InYsxksWQKX9gnMmGHwkjKBsUuSimHp0kCfKwMzfoOt68JN10fk5hq6JEmSkln58hE3Xhex/XYw+w+4pE9g/gKDl5TujF2StB6FhYHrbwp88w1UqQK33RJRrZqhS5IkKRVsvnnEbbdE1NgSfpoCV1wZWLbM4CWlM2OXJK3Hgw8FxrwN5cvDzTdE1Nva0CVJkpRKatWMg1elSvD5BLj2hkBBgcFLSlfGLkn6G68MCjzzbHx8RZ+IprsZuiRJklLRDg0ibr4honx5ePsduOPuQAgGLykdGbskaR0+HBe46+74AdDpPSLatzN0SZIkpbJme0RcfWVEFMGg1+CxJ4xdUjoydknSWnw7KfCvfwcKCqFjBzjlpESvSJIkSSWh9UERF18Y/xHz8X7w0isGLyndGLsk6X9Mmxa4pE9gyRLYsxn0uSQiipzqkiRJShddjog47ZT4+K7/C7z5lsFLSifGLkn6izlzAhdfFpgzB3ZoADddH1G+vKFLkiQp3fQ4NeKIwyEEuO7GwPhPDV5SujB2SdJKixcHLr08MHUa1KkNt98aUamSoUuSJCkdRVHERRdGHHgArFgBl18ZmDTZ4CWlA2OXJAH5+fEeXRO/hWpV4Y7bIrasbuiSJElKZ+XKxRvW794UFi+GSy4LTJtm8JJSnbFLUsYLIXDzrYFxH0GFCnDLzRH16xm6JEmSMkFubsR/bozYoQH8MQcuujTwxx8GLymVGbskZbwHHwoMHwHlsuD6ayJ22dnQJUmSlEk23zzi9lsj6tSBab/GwWvBAoOXlKqMXZIy2jPPBvoPiI/7XBrRch9DlyRJUibasnrEXbdFbJEH330Pl10RWLrU4CWlImOXpIz1yqDA/Q/GD2DOPCOi0yGGLkmSpEy29dYRd9wWsXkl+OJLuPLqwIoVBi8p1Ri7JGWkN0YF7rgrfuByUnc4sZuhS5IkSdBwh4hb/xORmwsfjoMbbgoUFBi8pFRi7JKUcd4dG7jhxkAIcFQXOON0Q5ckSZL+tFuTiJuuj8jOhlFvwh13B0IweEmpwtglKaN8/Eng6msCBYXQoT1ceH5EFBm7JEmStLq9W0RcdWVEFMGg16Dvw8YuKVUYuyRljC+/ClxxZWD5Cjhgf7jisoisLEOXJEmS1q5t64hLL44fLz79DPQfYPCSUoGxS1JGmPxd4JI+gSVLYa/mcM1VEdnZhi5JkiT9vc6HRZzVO37c+EDfwKDBBi8p2Rm7JKW9774PXHhRYOFCaLIr3HR9RE6OoUuSJEnF0/2EiBO7xce33REY9abBS0pmxi5Jae37H+LQNW8+7LQj3HpzRMWKhi5JkiRtmN69Io44HEKA624IvPOuwUtKVsYuSWnr+x8CF/wjMHce7NgY7rwtonJlQ5ckSZI2XBRFXHRhxMHtoKAArrom8N77Bi8pGRm7JKWlH/4Suho3gjtvN3RJkiRp05QrF3Hl5RFtWkN+Plx5dfj/9u48vory3uP4d7JCTCCHXUDCmpAYtrBv4gICBfW6IVULvVAULFSxSqFaoVirRS8gIPeiqBW9FgRUFNAivQqELZCwJhCQkiBBIEBYQsx6nvvHECCGJcBJTjL5vF+v88o5M8PkObx+mTPzPc/zjDbGEXgB5Q1hFwDHSd5jNOaZC0HXtP+yVI2gCwAAAB7g52fppRcs9bpNysuTJrxotDmewAsoTwi7ADjK9h1Gvxtrz9HVMoKgCwAAAJ7n52dp0p8sde8m5eZKf/ij0ZatBF5AeUHYBcAxNm02evZ5o7NnpbZtpDenEnQBAACgdPj7W3p5kqWuXaScHGnceKNt2wm8gPKAsAuAI6yJNRo3wSg7W+rcSXrjb5ZuuomgCwAAAKUnIMDSX/5sqVNH6ads6bk/EHgB5QFhF4AK78ulRi++ZJSXJ91+m/TqXyxVqULQBQAAgNIXGGjp1b9Yah8j/fST9OzzRps2E3gB3kTYBaDCMsbo3ffd+tsbRgVu6Rf9pEkvWQoIIOgCAABA2QkMtDTlVUtdOp8b0jjBaE0sgRfgLX7ebgAAXI/8fKMpbxgt/9p+/esh0vD/tGRZJQ+6du/erbi4OCUmJiopKUnp6ekKCAjQ6tWrr6tNCQkJSkhIUFJSkpKSknTy5EmFhYVpwYIF17U/AAAAXJuCggKtXLlSSUlJSkxMVHJysrKzs3X//ffrD3/4g0d+x7vvvqt33nlHkvTyyy+rT58+kgp7eEl/ftnou9XSiy8ZvfiC1OcuvogFyhphF4AK5+xZoz9NMorbJPn6SL9/1tK9A6/9JOK999677mDrUqZNm6a9e/d6bH8AAAC4NmfPntWLL75YavtPTU3VBx98IMuyZEzxnlv+/pYmvSS9OsXonyukyX8xysmWBg4g8ALKEmEXgArl4EGj8S8YpaRKVapIkyda6tb1+k4eoqOj1aJFC0VGRioyMlIDBgy4obZ16tRJd911lyIjIxUaGqqhQ4fe0P4AAABwbfz8/NS/f39FRkYqKipKe/bs0ZQpUzyyb2OMXnvtNQUHBys6OvqyX5r6+Vl6YbxUtYrR519Ir71ulPWTNOghAi+grBB2Aagw4hOMXpxodOaMVKuW9NpfLLVsef0nDUOGDPFg66QxY8acf37o0CGP7hsAAABXFxQUpIkTJ55/nZKS4rF9L1myRFu2bNGkSZMUFxd3xW19fCz9fqxUpYrR/E+kGbOMMjOl/xyqa5p2A8D1YYJ6ABXCp58bPfucHXRFRkpz59xY0AUAAACU1PHjx/XWW2+pQ4cO6tevX4n+jWVZ+u0oS8N+bZ+zvvd3o7+9bpSfz8T1QGmjZxeAci0nx2jam0ZLl9uv+/aRxj1nKTCQoAsAAABlY+rUqcrJydG4ceOu6d9ZlqVhv5ZcLp0/p00/ZvTyJCkoiPNZoLTQswtAuZWWZjTyt/ZJgY+PNOpJSy/+kaALAAAAZSc2Nlb/+te/NHToUDVq1Oi69nH/fZb++rKlwEBpY5w0+mmjY8fp4QWUFsIuAOXS6jVGw58w2vu9FBoqTX3d0mO/tJjjAAAAAGUmKytLr7/+uho1aqRf/epXN7SvHt0tzZxuKTRU2rNXemKU0Z69BF5AaSDsAlCu5OYazZzt1h//ZJR5VmoVLb3/jqUO7Qm5AAAAULb++7//W0eOHNG4ceMUEBBww/uLirQ05y1Lt9wiHT0qjRpt9K//I/ACPI2wC0C5sT/F6IlRRgs+sV8/8rA0c7ql2rUJugAAAFC2EhMTtXjxYvXv318dOnTw2H4bNLD09mxLnTtJOTnSxMlGb891y+0m9AI8hQnqAXidMUafLZFmzTbKzZVCq0vjx1nq0Z2QCwAAAN6xbt06ud1u7du3T6NGjSqyLjU1VZL07rvv6tNPP9Wdd96phx9+uMT7DgmxNOVV6X/eNvrHAmneR9K+fxu9MEGqFsI5MHCjCLsAeFV6utGU/zJav8F+3amj9MJ4SzVr8iEPAAAA79uzZ89l16WkpCglJUXh4eHXvF9fX0u/HWWpWTOjKa8brV0nDR9h9OeJ9nBHANePsAuAVxhjtOwradZb9txcAf7SqJGWHrxf8vHhwx0AAADeNWLECI0YMeKS6yZPnqzly5fr5ZdfVp8+fW7o9/S721LjMOlPk4x+/FF6aozRUyOlhx8UN2cCrhNzdgEoc4cPGz37vNFrU+ygKzJSmvu2pYcftMp90LVw4UI98sgjmj17trebAgAAAA8ZPXq0HnnkESUmJnrl97eMsPTe25Zuv03Kz5dmzDL645+MTp1iHi/getCzC0CZyc83+mSR9P7fjX7KlgICpBHDLQ16yO7GXdbWrl2r9957r8iyvLw8DR8+/PzrYcOGqXv37udfnzx5UqmpqTp27Fix/S1ZskRffPHF+f1I0uHDh4vs7/nnn1fLli09+j4AAABwwZQpU5ScnCzJPneTpO+++67IcMR33323yL85ePCgDh8+rOzs7DJr58+FhFh6+c/Sp5/bc9muiZWSdhmNHyd17Vy+vxAGyhvCLgBlIj7BaNqbRin2XJ5q3cqehL7RLd774M7IyCj27Z0xpsiyjIyMEu/v6NGjxfaXk5NTZNnZs2evs7UAAAAoif379xc7J8vIyLim8zpvsSx7Wo/oW6XJfzFKPSA9/wej++4x+u0oS0FBhF5ASVjGmBL1i6wIB4Zr4XK5HPeeUPlUhDo+ctRo9v8Y/ev/7NehodJTT1rq15e5uWCrCHUMXA11DCegjuEETqrjnByjOe/YIyMkqX59acI4S+3acg7tdE6q49Lgcrmuug09uwCUirNnjT762GjBQik3V/Lxke6/Txo+zOJ2ygAAAMBVBAZa+t1oS927Gb3ymtGhQ9KYZ4x+0c/oqZGWQkM5pwYuhwnqAXhUfr7Rp58bPfKY0Yf/awddbdtIc+dYGvu0D0EXAAAAcA3ax1ia956l++6xXy//Wnp0iNHS5UZuNxPYA5dCzy4AHpGfb/TPb6QPPrS/dZKkRrdIT4201L0bt00GAAAArldwsKXnf2+pfz+j16ca7dsnvTbFaNlyacxvpahIzrWBixF2Abghlwq5XC5p2K8t3TNA8vPjgxcAAADwhOhbLb07R1q4WHrvfaMdO6UnRhnd3dvoiRGW6tXl3BuQCLsAXKesLKOly6RPFhkdPmIvc7mkRwdb+o97papV+aAFAAAAPM3Pz9IvH5F63ym9867RV/+UVqyUvltt9Mggo18OslStGufiqNwIuwBck6NHjRZ9ZvTFF1LmWXsZIRcAAABQtmrXtvTH8ZYefMBo5ltGW7dJH34kLf7U6OEHjR55mNALlRdhF4CrcruNNm2WlnxptHatVOC2l99yizR4kKV+d9t3iwEAAABQtiLCLc2cLsWulea+b8/n9cGH0sLFRg89YDSYnl6ohAi7AFxWerrR1yukL5Ya/fjjheVt20iDH7HUrYvk48MHJwAAAOBNlmWpZw+pezdpzVrp/b8bfb9PmveRtOhTowcfMBr0oCWXi3N3VA6EXQCKyMoyWh0rff1Po/gEyZy7m3HwTVK/vtK9Ay01bcqHJAAAAFDe+PhY6tVT6tnd7un1/gdGe7+3hzcu+MSoX1+jwQ9batSI83k4G2EXAGVmGq3fKK2JNVq3XsrOvrCudStp4C8s3XmHVKUKH4oAAABAeefjY+m2nlLPHnboNe9/jXbtkr74UvriS6Me3Y0GPWSpXVu7VxjgNIRdQCWVnm4Uu84OuBK2SPn5F9Y1bCD1vdvS3X2kBvX58AMAAAAqosLhjT26S9t3SP9YYBS7VuceRo3DpPvvs0dw3HQT5/1wDsIuoJLIzTXamSht2mxPNr87uej6xmH2Nz89e1iKbMk3PAAAAIBTWJalNq2lNq0tHThg9Mkio3+ukFJSpWkzjP7nHanv3UYP3MeUJXAGwi7Aodxuo5QUaVO8HXBt3VZ0eKIk3Rplh1u39RDj9gEAAIBKoFEjS889a2nkE3bg9ennRqkHpM+XSJ8vMWrT2mjgLyzd3kuqWpVrBFRMhF2AQ2RlGe3aLe3YKe1MtHtxZWYW3cblkjq0lzq2t9Spo1SrFh9eAAAAQGUUHGzpwQekB+6XErZIn31utCZW2rZd2rbdaNoM6a477eArKpKRH6hYCLuACsgYo8OHpbXrc7Rxo1s7E6Xv90lud9HtAgOlNq2lDu0tdewgNWtqT1YJAAAAAJIdYrWPkdrHWEpPN1r+tbTsK6NDh6Qvl0pfLjVq0lga8Aup792SK5TrCZR/ljHGlGTDjIyM0m5LmXK5XI57T3Cu3FyjPXulnYnSzp1GOxKl48eLb1e3rhR9q9Qq2lL0rVLzZpKfHx9GKN84HsMJqGM4AXUMJ6COPcPttqdBWfaV0XerpJwce7mvrz3Z/cBf2F+mc61ROqjjK3O5XFfdhp5dQDljjNGRI1JikpSYZA9H3Pu9lJdXdDtfXykq0k+RLfMVHW0pOkqqU4cPGwAAAAA3xsfHUkw7KaadpbG/M1r5f9Ky5fa0KatWS6tWG9WqJd3dx+ju3paaN+M6BOULYRfgZdnZRsl77HBrZ6JRYtKle22FVpduPddrq1W01DJCqlevOok/AAAAgFITHGzpP+6V/uNeS/v+bbRsuT2x/bFj0sf/kD7+h1GzpkZ9elvq01uqyxfwKAcYxgiUsaNHjbbtkHbssIOt7/dJBQVFt/H1tYcgRt8q3Rpl6dYoqX794pNCUsdwAuoYTkAdwwmoYzgBdVw28vKM1q2XVqy0f148CqVtG+nuPvbdHKuFEHxdD+r4yhjGCHiZMUY//GDf0WTrdqPt26UfDxffrmbNosFWRLhUpQofDAAAAADKH39/S71uk3rdZun0GaNVq6R/fmPP82U/jKa9KXXtYg9z7NpFCgzk+gZlh7AL8CBjjPanSPEJ0rZtdg+unwfyvj5SixZS61bSrbfaE8nXqc2tfAEAAABUPNVCLN0zULpnoKXDR4xW/kv6ZqXRvn9Lq9dIq9cYBd8k3d7L6O4+ltq0lnx9ufZB6SLsAm5QerrR5nhpc7z98/iJousD/KWoKKlNa6lNazvcCgri4A4AAADAWerVtfT4o9Ljj1r6fp/RipVGK1dKR9OlpculpcuNXC6pV0+j23tZatuGOzqidBB2AdcoM9Punrs53mjTZin1QNH1AQF2sBXTzv7WomWEFBDAARwAAABA5dG8mX2XxpEj7Ounb1YafbvKHvny+RfS518YVa8m3XYu+GofQ/AFzyHsAq4iL8+eSL6w59auXVKB+8J6Hx8pIkLq0F7q2N6ec4vx6AAAAAAg+fhYimlndwZ49hmjhC3Sd6uMVq+RTp2WvlwmfbnMKCRE6tnD6LaeljrEMIcxbgxhF/AzxtjjywuHJm7dJmVnF92mYUOpYwepQ3tL7dpylxEAAAAAuBp/f0udO0mdO1n6/Vj7Wuu7VUar1tg9vpZ/JS3/yiggQOoQY9Stq6VuXaU6dbjewrUh7AIkHT5iFJ8gbdps//z5pPKhoXbPrQ7t7W8Z6tXjYAsAAAAA18vPzzp/jTX2aaPtO+zga+066fARad0Gad0GI02TWjQ36t5N6t7NUkS43VsMuBLLGGNKsmHGz6/+KziXy+W494SSO33GaMvWC0MTf/ih6PoqVaS2bc6FW+2lpk3K5wGVOnaeY8eOebsJZS40NFQnT570djOAG0IdwwmoY1QEtWrVuuJ6zo8rPmOM9u+X1q6X1q032pkoXZxa1HCdm0Kmg32tVrt2+btOu1HU8ZW5XK6rbkPYhUohN9c+SG46F24lJ0vun827FdnywtDEW6PsLrblHXXsPDVq1PB2EwAAAMqtEydOXHE958fOk3HSaMNGae06o7hNUlZW0fWNw6QOHez5k9u0loKDy/913NVQx1dWkrCLYYxwJLfbaN8+adO5ebe2bZdycopuE9bowtDEdm2dcVAEAAAAACdxhVrq31fq39dSXp7Rjp3nOjFslnYnSymp9mPRYiPLkpo1NWrdSmrdylLrVsz3VVnRswuOYIzRDz9I8Vuk+ASjrVulk6eKblOzxoVwq32MMw561LHz0LMLAADg8ujZhYudPm3f3bFw7uWDacW3qVdX58Ov6Gi7J5ifX/m+FqSOr4yeXXC0Qz/aB7aEBKP4LdLx40XXV60itWt7bt6tDlKTxpJlle+DGgAAAACgZKpVs3R7L+n2XvZ13vHjds+v7TvsCe/37rUnuz98RFqx0u7nExAgNWtmFNFCCg+3FN7CnqM5IIBrRSch7EKFYIxR6gFp+w77wLVtm/Tj4aLbBPhL0dFSTDtLMe3sObgqwrxbwMX27Nnj7SaUOSZEhhNQx3AC6hhARVezZtHwKyvLKGmXfR25bbvR7mTp7Flp1y77IdkBmK+vdMstRo3D7E4SjRtbatJYuqUh15QVFWEXyqWffjLas1dKTLLDrR07pFOni27j6ytFRUox7aT2Mfak8oGBHIhQsV3tDkNO5HK55OfHxxEqNuoYTkAdA3CaoCDr3FQ2kmTJ7TY6dEhK3ivt2WNfc+7ZY19rpqTYj+9WSReHYDffbNSgvtSwgdSgvqX6DaQG9aX6N3P9WZ7xaQavy8kx2vu9fYfE3cl22p56oOjdEiUpMNAOtwrHW7eKtg9eAAAAAABcjY+PpYYNpYYNpbvusK8ljTE6mm4HXftTpJQUo/3nnmdlSQcP2o+N9tZF9letmlHt2lLtWvajVi2pdm3r/HNXqFStGkMkvYGwC2Xm7FmjlFQpNVVKOWCUkmI///Fw8WBLsg8WLVteuItGeAu6kAIAAAAAPMeyLNWtI9WtI3XuJEkXQrD0dHvS+7Q06WCaUdoh6dAhe1lWlnT6tP3Yt+/iPRa/B2DVKkbVqkvVq9nh1/lHiN2BIyhICgqSbjr3s27dfBXkGwUF2Z0+/PzsucZ8fZmHuqQIu3DD8vONTp+2u36ePi0dOy4dOSIdPWp05Ih05Kj9+ufDEC/mckmREVJEhNQywlJEhFSrJn/EAAAAAICyZ1mW6tSR6tSxp84pDMEkOwg7c0ZKPyalp0vHjklH06X0Y0bHLlp2+ozdseOnbPtx5MilflPxcEw6dZk2Sf7+RgH+kn+A5O9vz13tf+7h4yNZPpKvjxQcLI1+ylLjsMp5XU3YdRXGGLndkjH2o/C5233hUVBw7nHuubug+LKCgqLbut1SfkHx7S+1v2LLC6SCAlN8n5f6G7nkmyr5+y9wSzk59iM3R8rJlbKz7denz9jh1tmzJd9fzZr2rV7DGklhYZb9PEyqWYOEGgAAAABQ/lmWdb53VrOmRdYU2c7tNso8K50+da5zyJkLz8+csQOzrCzpbJb9s/DxU7aPMjPd+inLviYvZIyUm2s/VILr8K5d7OvvyqhSh11vz3Vr8Wd22OQ2knHbOdDFgRZKxrLs5Lh6NalGDaluXbsbaN26dpfQOnWkenWl4GACLQAAAACA8/n4WKoWYg9XbFhs7eWvjV0ulzIyMiTZI6ny8qS8PCk3T8rLveh5nh185eVJefl2puF22wFZ1SqFPdIqp0oddu1PubZeSVfi42OPny386etrdx0sfH7xch/fq2/je5ntr7R/Hx9d6e/lSqt0uU5VPj72ZHqBgbrwCJCqVJFCQuwku3o1O+jy9SXIAgAAAADAU/z8LPn5SVWrerslFUulDrtemWzpxx8lWZKPZQc+ls+55xf9tHRu7Kt14Wfh88KwiSF4AAAAAAAA3lepwy4fH0sNGni7FQAAAAAAAPAUH283AAAAAAAAAPAUwi4AAAAAAAA4BmEXAAAAAAAAHIOwCwAAAAAAAI5B2AUAAAAAAADHIOwCAAAAAACAYxB2AQAAAAAAwDEIuwAAAAAAAOAYhF0AAAAAAABwDMIuAAAAAAAAOAZhFwAAAAAAAByDsAsAAAAAAACOQdgFAAAAAAAAxyDsAgAAAAAAgGMQdgEAAAAAAMAxCLsAAAAAAADgGIRdAAAAAAAAcAzCLgAAAAAAADgGYRcAAAAAAAAcg7ALAAAAAAAAjkHYBQAAAAAAAMcg7AIAAAAAAIBjEHYBAAAAAADAMQi7AAAAAAAA4BiEXQAAAAAAAHAMwi4AAAAAAAA4BmEXAAAAAAAAHIOwCwAAAAAAAI5B2AUAAAAAAADHsIwxxtuNKGtnzpxRfHy82rdvr5CQEG83B7gu1DGcgDqGE1DHcALqGE5AHcMJqGPPqJQ9uzIzM7Vq1SplZmZ6uynAdaOO4QTUMZyAOoYTUMdwAuoYTkAde0alDLsAAAAAAADgTIRdAAAAAAAAcIxKGXYFBwerV69eCg4O9nZTgOtGHcMJqGM4AXUMJ6CO4QTUMZyAOvaMSjlBPQAAAAAAAJypUvbsAgAAAAAAgDMRdgEAAAAAAMAxCLsAAAAAAADgGIRdAAAAAAAAcAzCLgAAAAAAADiGn7cb4Anbt2/XzJkztXXrVuXl5al58+YaOnSo7rnnnhLv4/Dhw5o9e7ZWr16tY8eOKTQ0VD179tTvfvc73XzzzaXYekBasmSJ4uPjtXPnTu3Zs0d5eXl69dVX9cADD1zTftxutz7++GMtWLBAqampCgoKUufOnTV27Fg1bty4dBoPnOOJOj5+/LgWLVqkxMRE7dy5U2lpaZKk5OTk0mo2UIQn6njz5s1auXKl4uLilJaWpqysLDVo0EB33XWXnnzySVWrVq0U3wHgmTreuHGjPvnkEyUlJSk9PV15eXmqV6+eYmJiNGLECDVt2rQU3wHgufPji+Xl5emhhx7S7t271aRJE3399dcebDFQnKeOx0OGDLns+gULFqht27YeaK2zVPiwa+PGjRo+fLj8/f01YMAAhYSEaMWKFXruueeUlpamkSNHXnUfBw4c0ODBg3X8+HF1795d/fv3V2pqqj777DOtWrVK8+fPV6NGjcrg3aCyevPNN5WWliaXy6U6deqcv8C/VhMnTtQnn3yi5s2b6/HHH9fx48e1fPlyrV27VvPnz1fz5s093HLgAk/U8ffff6+pU6fKsiyFhYWpatWq+umnn0qhtcCleaKOn376aWVkZKh9+/a67777ZFmW4uLiNHfuXK1YsULz589XzZo1S6H1gM0Tdbxu3TrFx8erdevW6tGjh/z9/fXvf/9bS5Ys0dKlS/XOO++oS5cupdB6wOap8+OLzZ49WwcOHPBA64CS8WQdd+rUSZ06dSq2vF69ejfSROcyFVheXp7p3bu3iY6ONomJieeXnzlzxgwYMMBERUWZ/fv3X3U/TzzxhAkPDzcffPBBkeXLly834eHhZtiwYZ5uOlDE2rVrzcGDB40xxsyZM8eEh4ebxYsXX9M+1q9fb8LDw82jjz5qcnJyzi9ft26diYiIMI899phH2wz8nCfqOD093cTFxZkzZ84YY4zp27evCQ8P93hbgcvxRB3PmTPHHDlypMgyt9ttJk6caMLDw82kSZM81l7gUjxRx9nZ2Zdcvm7dOhMeHm4eeOCBG24ncCWeqOOL7dy500RFRZl58+aZ8PBw07dvX081FbgsT9Txhg0bTHh4uJkxY0ZpNNGxKvScXRs2bNCBAwc0cOBARUVFnV8eHBysp556Svn5+fr000+vuI+cnBzFxsaqVq1a+tWvflVkXf/+/RUZGanY2Fj98MMPpfIeAEnq1q2bGjRocEP7WLhwoSTpmWeeUUBAwPnlXbt2VY8ePbRp0ybt37//hn4HcCWeqONatWqpY8eOCg4O9lCrgGvjiTp+4oknVKdOnSLLLMvSU089JUnatGnTDe0fuBpP1HFgYOAll3ft2lXVq1endwxKnSfquFBubq7Gjx+vNm3a6PHHH/fIPoGS8GQd49pU6LArLi5OktSjR49i67p3715km8s5efKk8vPzVb9+fVmWVWx9w4YNJdnBGlCebdy4UUFBQYqJiSm2rvBvhAssAPAePz979ghfX18vtwS4flu2bNGpU6fUokULbzcFKLFZs2YpNTVVr7zyyiWv+YCKICUlRfPmzdPbb7+tpUuX6sSJE95uUrlWoefsSklJkSSFhYUVW1e9enW5XC6lpqZecR/VqlWTr6+vDh06JGNMsYPfwYMHi/wuoDzKyspSenq6wsPDL3kRVTg5PXUMAN6zePFiSRe+kAMqgo0bNyouLk65ublKTU3Vt99+K5fLpQkTJni7aUCJbN++XXPnztXYsWPVpEkTbzcHuG5Lly7V0qVLz7+uUqWKxowZo9/85jdebFX5VaHDrszMTElSSEjIJdcHBwfr8OHDV9xH1apV1bFjR23YsEEff/yxHnvssfPrVqxYoV27dkmSzpw546FWA55XWJ+XG/pVuLzwbwYAULZ27dqlt956SzVr1uSkFBVKXFycZs2adf51WFiYpk6dqujoaC+2CiiZ3NxcTZgwQZGRkRo2bJi3mwNclxo1amjcuHG6/fbbVb9+fZ0+fVobN27UG2+8oddff13BwcEaPHiwt5tZ7lToYYyeMmHCBAUFBWny5MkaPny4pkyZotGjR+vpp59WRESEJMnHh/8qAABw7X744Qc9+eSTKigo0NSpU1WjRg1vNwkosTFjxig5OVlbtmzRwoUL1bRpU/3yl7/Ul19+6e2mAVc1ffp0paam6q9//StDyFFhtWjRQsOHD1ezZs1UtWpV1a1bV/fee6/mzp0rf39/zZw5U26329vNLHcqdIJT2Fvlcr2uMjMzL9vr62ItW7bUokWL1L9/fyUlJWnevHnav3+/Jk+erPvuu0+SODFFuVZY55fruVW4nEm/AaBspaWlaejQoTpx4oRmzJihLl26eLtJwHUJCgpS69atNWvWLDVt2lQvvfQS88WgXEtMTNTf//53jRw58nwHBsBJwsPD1aZNGx07duyq0zdVRhV6GGPhPESpqanFulKfOnVKGRkZateuXYn21axZM02fPr3Y8vHjx0sSXbVRrgUFBal27do6ePCgCgoKin1zVThXV+HfDACg9B08eFBDhgzR0aNHNX36dN1xxx3ebhJww/z8/NS5c2ft3r1bO3bsUK9evbzdJOCSkpOTVVBQoJkzZ2rmzJnF1u/fv18REREKCQnR5s2bvdBC4Ma5XC5JUnZ2tpdbUv5U6LCrY8eOmjNnjmJjYzVgwIAi69auXStJ6tSp03XvPzMzU99++61CQ0OZTBblXqdOnbRs2TIlJCSoY8eORdbFxsZKUrHlAIDScXHQNW3aNPXu3dvbTQI85ujRo5Iu3GEUKI8aN26shx566JLrFi1apJCQEPXt21dVq1Yt45YBnpGfn6+kpCRZlqWbb77Z280pdyr0J1TXrl11yy23aOnSpRoyZIgiIyMl2SHV7Nmz5efnp/vvv//89idOnFBGRoZcLleRYYnZ2dny8/Mr8oGdm5urF154QSdPntQLL7ygwMDAsntjwBVcro4HDRqkZcuWafr06Xr//fcVEBAgSVq/fr1iY2PVsWNH7kCDcuNydQxUJJer48Kg68iRI5o2bZr69OnjxVYCV3a5Ot60aZM6dOhQ7E7lsbGxWrlypUJCQko8ggIobZeq45iYGMXExFxy+0WLFqlWrVp65ZVXyrKZwBVd7ni8ZcsWtW3btsjxOD8/X1OmTFFaWpp69uyp0NBQL7S4fLOMMcbbjbgRGzZs0G9+8xv5+/tr4MCBCg4O1ooVK3Tw4EE988wzGjVq1PltZ86cqVmzZmn06NEaM2bM+eWbN2/WmDFj1K1bN918883KzMzUqlWrdOjQIQ0aNEiTJ08u9kEPeNLChQsVHx8vSdqzZ48SExMVExOjsLAwSVLv3r3P9wq4XB1L0osvvqiFCxeqefPm6tWrl44fP67ly5crMDBQ8+fPV/Pmzcv2jaFS8VQdFw4fl6RvvvlGmZmZRb64GDduHAEZSo0n6vjOO+9UWlqa2rZtqx49elzy9/y87gFP8kQdd+jQQS6XS61atVK9evWUk5Oj5ORkbdq0Sf7+/nrjjTfUr1+/sn9zqDQ8dV5xKREREWrSpIm+/vrr0nsDgDx3XiFJ7dq1U926dXXmzBlt2rRJ+/fvV/369fXRRx+pQYMGZfzOyr8K3bNLkrp06aKPP/5YM2bM0FdffaW8vDw1b95cTz/9tO69994S7aN+/frq1KmT4uPjdezYMVWtWlVRUVEaP368+vbtW8rvAJDi4+P12WefFVmWkJCghIQESVKDBg1KNARm8uTJioiI0IIFC/Thhx8qKChId9xxh8aOHUuvLpQ6T9Xxz/fx82WjR48m7EKp8UQdp6WlSZK2bt2qrVu3XnIbwi6UJk/U8ZgxY7RmzRrFx8frxIkT54fJPPzwwxo6dKhatGhRau0HJM+dVwDe5Ik6Hjx4sNasWaO4uDhlZGTIz89PjRo10siRIzVs2DBVr1691NpfkVX4nl0AAAAAAABAIR9vNwAAAAAAAADwFMIuAAAAAAAAOAZhFwAAAAAAAByDsAsAAAAAAACOQdgFAAAAAAAAxyDsAgAAAAAAgGMQdgEAAAAAAMAxCLsAAAAAAADgGIRdAAAAAAAAcAzCLgAAAAAAADgGYRcAAAAAAAAcg7ALAAAAAAAAjvH/sOSn6kV9eFQAAAAASUVORK5CYII=",
+ "text/plain": [
+ "