-
Notifications
You must be signed in to change notification settings - Fork 1.9k
/
options.lua
143 lines (133 loc) · 7.5 KB
/
options.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
--------------------------------------------------------------------------------
-- Configure options
--------------------------------------------------------------------------------
local options = {}
-- options for train
local opt_train = {
DATA_ROOT = '', -- path to images (should have subfolders 'train', 'val', etc)
batchSize = 1, -- # images in batch
loadSize = 143, -- scale images to this size
fineSize = 128, -- then crop to this size
ngf = 64, -- # of gen filters in first conv layer
ndf = 64, -- # of discrim filters in first conv layer
input_nc = 3, -- # of input image channels
output_nc = 3, -- # of output image channels
niter = 100, -- # of iter at starting learning rate
niter_decay = 100, -- # of iter to linearly decay learning rate to zero
lr = 0.0002, -- initial learning rate for adam
beta1 = 0.5, -- momentum term of adam
ntrain = math.huge, -- # of examples per epoch. math.huge for full dataset
flip = 1, -- if flip the images for data argumentation
display_id = 10, -- display window id.
display_winsize = 128, -- display window size
display_freq = 25, -- display the current results every display_freq iterations
gpu = 1, -- gpu = 0 is CPU mode. gpu=X is GPU mode on GPU X
name = '', -- name of the experiment, should generally be passed on the command line
which_direction = 'AtoB', -- AtoB or BtoA
phase = 'train', -- train, val, test, etc
nThreads = 2, -- # threads for loading data
save_epoch_freq = 1, -- save a model every save_epoch_freq epochs (does not overwrite previously saved models)
save_latest_freq = 5000, -- save the latest model every latest_freq sgd iterations (overwrites the previous latest model)
print_freq = 50, -- print the debug information every print_freq iterations
save_display_freq = 2500, -- save the current display of results every save_display_freq_iterations
continue_train = 0, -- if continue training, load the latest model: 1: true, 0: false
serial_batches = 0, -- if 1, takes images in order to make batches, otherwise takes them randomly
checkpoints_dir = './checkpoints', -- models are saved here
cache_dir = './cache', -- cache files are saved here
cudnn = 1, -- set to 0 to not use cudnn
which_model_netD = 'basic', -- selects model to use for netD
which_model_netG = 'resnet_6blocks', -- selects model to use for netG
norm = 'instance', -- batch or instance normalization
n_layers_D = 3, -- only used if which_model_netD=='n_layers'
content_loss = 'pixel', -- content loss type: pixel, vgg
layer_name = 'pixel', -- layer used in content loss (e.g. relu4_2)
lambda_A = 10.0, -- weight for cycle loss (A -> B -> A)
lambda_B = 10.0, -- weight for cycle loss (B -> A -> B)
model = 'cycle_gan', -- which mode to run. 'cycle_gan', 'pix2pix', 'bigan', 'content_gan'
use_lsgan = 1, -- if 1, use least square GAN, if 0, use vanilla GAN
align_data = 0, -- if > 0, use the dataloader for where the images are aligned
pool_size = 50, -- the size of image buffer that stores previously generated images
resize_or_crop = 'resize_and_crop', -- resizing/cropping strategy: resize_and_crop | crop | scale_width | scale_height
lambda_identity = 0.5, -- use identity mapping. Setting opt.lambda_identity other than 0 has an effect of scaling the weight of the identity mapping loss. For example, if the weight of the identity loss should be 10 times smaller than the weight of the reconstruction loss, please set opt.lambda_identity = 0.1
use_optnet = 0, -- use optnet to save GPU memory during test
}
-- options for test
local opt_test = {
DATA_ROOT = '', -- path to images (should have subfolders 'train', 'val', etc)
loadSize = 128, -- scale images to this size
fineSize = 128, -- then crop to this size
flip = 0, -- horizontal mirroring data augmentation
display = 1, -- display samples while training. 0 = false
display_id = 200, -- display window id.
gpu = 1, -- gpu = 0 is CPU mode. gpu=X is GPU mode on GPU X
how_many = 'all', -- how many test images to run (set to all to run on every image found in the data/phase folder)
phase = 'test', -- train, val, test, etc
aspect_ratio = 1.0, -- aspect ratio of result images
norm = 'instance', -- batchnorm or isntance norm
name = '', -- name of experiment, selects which model to run, should generally should be passed on command line
input_nc = 3, -- # of input image channels
output_nc = 3, -- # of output image channels
serial_batches = 1, -- if 1, takes images in order to make batches, otherwise takes them randomly
cudnn = 1, -- set to 0 to not use cudnn (untested)
checkpoints_dir = './checkpoints', -- loads models from here
cache_dir = './cache', -- cache files are saved here
results_dir='./results/', -- saves results here
which_epoch = 'latest', -- which epoch to test? set to 'latest' to use latest cached model
model = 'cycle_gan', -- which mode to run. 'cycle_gan', 'pix2pix', 'bigan', 'content_gan'; to use pretrained model, select `one_direction_test`
align_data = 0, -- if > 0, use the dataloader for pix2pix
which_direction = 'AtoB', -- AtoB or BtoA
resize_or_crop = 'resize_and_crop', -- resizing/cropping strategy: resize_and_crop | crop | scale_width | scale_height
}
--------------------------------------------------------------------------------
-- util functions
--------------------------------------------------------------------------------
function options.clone(opt)
local copy = {}
for orig_key, orig_value in pairs(opt) do
copy[orig_key] = orig_value
end
return copy
end
function options.parse_options(mode)
if mode == 'train' then
opt = opt_train
opt.test = 0
elseif mode == 'test' then
opt = opt_test
opt.test = 1
else
print("Invalid option [" .. mode .. "]")
return nil
end
-- one-line argument parser. parses enviroment variables to override the defaults
for k,v in pairs(opt) do opt[k] = tonumber(os.getenv(k)) or os.getenv(k) or opt[k] end
if mode == 'test' then
opt.nThreads = 1
opt.continue_train = 1
opt.batchSize = 1 -- test code only supports batchSize=1
end
-- print by keys
keyset = {}
for k,v in pairs(opt) do
table.insert(keyset, k)
end
table.sort(keyset)
print("------------------- Options -------------------")
for i,k in ipairs(keyset) do
print(('%+25s: %s'):format(k, opt[k]))
end
print("-----------------------------------------------")
-- save opt to checkpoints
paths.mkdir(opt.checkpoints_dir)
paths.mkdir(paths.concat(opt.checkpoints_dir, opt.name))
opt.visual_dir = paths.concat(opt.checkpoints_dir, opt.name, 'visuals')
paths.mkdir(opt.visual_dir)
-- save opt to the disk
fd = io.open(paths.concat(opt.checkpoints_dir, opt.name, 'opt_' .. mode .. '.txt'), 'w')
for i,k in ipairs(keyset) do
fd:write(("%+25s: %s\n"):format(k, opt[k]))
end
fd:close()
return opt
end
return options