-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathinference_regressor.py
324 lines (249 loc) · 13.2 KB
/
inference_regressor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
import cv2
import numpy as np
import torch
from collections import OrderedDict
import torchvision.models as models
from glob import glob
from PIL import Image
Image.MAX_IMAGE_PIXELS = None
import networkx as nx
import pickle
import os
from tqdm import tqdm
import matplotlib.pyplot as plt
import pprint
from random import shuffle
import pandas as pd
# local imports
from regressors.deeplabv3.deeplabv3 import DeepLabv3Plus
from evaluate_full import evaluate
from aggregation.utils import visualize_graph
from driving.utils import skeleton_to_graph, skeletonize_prediction, roundify_skeleton_graph
class FormatPrinter(pprint.PrettyPrinter):
def __init__(self, formats):
super(FormatPrinter, self).__init__()
self.formats = formats
def format(self, obj, ctx, maxlvl, lvl):
if type(obj) in self.formats:
return self.formats[type(obj)] % obj, 1, 0
return pprint.PrettyPrinter.format(self, obj, ctx, maxlvl, lvl)
def visualize_graph(G, ax, aerial_image, node_color=np.array([255, 0, 142])/255., edge_color=np.array([255, 0, 142])/255.):
if aerial_image is not None:
ax.imshow(aerial_image)
nx.draw_networkx(G, ax=ax, pos=nx.get_node_attributes(G, "pos"),
edge_color=node_color,
node_color=edge_color,
with_labels=False,
node_size=3,
arrowsize=8.0, )
def load_full_model(model_path):
state_dict = torch.load(model_path)
new_state_dict = OrderedDict()
for k, v in state_dict.items():
if 'module' in k:
name = k[7:] # remove `module.`
else:
name = k
new_state_dict[name] = v
model_full = DeepLabv3Plus(models.resnet101(pretrained=True),
num_in_channels=3,
num_classes=3).cuda()
model_full.load_state_dict(new_state_dict)
model_full.eval()
print("Model {} loaded".format(model_path))
return model_full
def load_succ_model(model_path, full_model=False, input_layers="rgb+drivable+angles"):
state_dict = torch.load(model_path)
new_state_dict = OrderedDict()
for k, v in state_dict.items():
if 'module' in k:
name = k[7:] # remove `module.`
else:
name = k
new_state_dict[name] = v
if full_model is True:
if input_layers == "rgb": # rgb [3], pos_enc [3], pred_drivable [1], pred_angles [2]
num_in_channels = 3
elif input_layers == "rgb+drivable":
num_in_channels = 4
elif input_layers == "rgb+drivable+angles":
num_in_channels = 6
else:
raise ValueError("Unknown input layers: ", input_layers)
else:
num_in_channels = 3 # rgb
model_succ = DeepLabv3Plus(models.resnet101(pretrained=True),
num_in_channels=num_in_channels,
num_classes=1).cuda()
model_succ.load_state_dict(new_state_dict)
model_succ.eval()
print("Model {} loaded".format(model_path))
return model_succ
def run_successor_lgp(full_model_pth, succ_model_pth, input_layers, skeleton_threshold, picklefile, split):
do_visualization = False
# Image folder
test_images = sorted(glob("/data/lanegraph/urbanlanegraph-dataset-dev/*/successor-lgp/{}/*-rgb.png".format(split)))
test_graphs = sorted(glob("/data/lanegraph/urbanlanegraph-dataset-dev/*/successor-lgp/{}/*.gpickle".format(split)))
# jointly shuffle images
joint = list(zip(test_images, test_graphs))
shuffle(joint)
test_images, test_graphs = zip(*joint)
# Load model
# model_full = load_full_model(model_path=full_model_pth)
model_succ = load_succ_model(model_path=succ_model_pth,
full_model=True,
input_layers=input_layers)
pred_dict = {}
images = []
images_succ = []
graphs_pred = []
graphs_gt = []
sample_ids = []
# iterate over samples
for image_counter, (test_image, test_graph) in tqdm(enumerate(zip(test_images, test_graphs)),
total=len(test_images),
desc="Inference on samples"):
sample_id = os.path.basename(test_image).replace("-rgb.png", "")
city_name = test_image.split("/")[-4]
if city_name not in pred_dict:
pred_dict[city_name] = {}
if split not in pred_dict[city_name]:
pred_dict[city_name][split] = {}
img = Image.open(test_image)
img = np.array(img)
img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
gt_graph = pickle.load(open(test_graph, "rb"))
# Run model
with torch.no_grad():
rgb_torch = torch.from_numpy(img).permute(2, 0, 1).float().cuda() / 255.
rgb_torch = rgb_torch.unsqueeze(0)
(pred, _) = model_succ(rgb_torch)
pred = torch.nn.functional.interpolate(pred,
size=rgb_torch.shape[2:],
mode='bilinear',
align_corners=True)
pred_angles = torch.nn.Tanh()(pred[0:1, 0:2, :, :])
pred_drivable = torch.nn.Sigmoid()(pred[0:1, 2:3, :, :])
if input_layers == "rgb":
in_tensor = rgb_torch
elif input_layers == "rgb+drivable":
in_tensor = torch.cat([rgb_torch, pred_drivable], dim=1)
elif input_layers == "rgb+drivable+angles":
in_tensor = torch.cat([rgb_torch, pred_drivable, pred_angles], dim=1)
else:
raise ValueError("Unknown input layers: ", input_layers)
(pred_succ, features) = model_succ(in_tensor)
pred_succ = torch.nn.functional.interpolate(pred_succ,
size=rgb_torch.shape[2:],
mode='bilinear',
align_corners=True)
pred_succ = torch.nn.Sigmoid()(pred_succ)
pred_succ = pred_succ[0, 0].cpu().detach().numpy()
skeleton = skeletonize_prediction(pred_succ, threshold=skeleton_threshold)
succ_graph = skeleton_to_graph(skeleton)
succ_graph = roundify_skeleton_graph(succ_graph)
# # visualize full model predictions
# pred_drivable = pred_drivable[0, 0].cpu().detach().numpy()
# pred_angles = ac.xy_to_angle(pred_angles[0].cpu().detach().numpy())
# pred_angles_color = ac.angle_to_color(pred_angles, mask=pred_drivable > 0.3)
# relabel nodes
mapping = {n: i for i, n in enumerate(succ_graph.nodes)}
succ_graph = nx.relabel_nodes(succ_graph, mapping)
pred_dict[city_name][split][sample_id] = succ_graph
images.append(img)
# images_succ.append(np.digitize(pred_succ, np.arange(0, 1.1, 0.1)))
images_succ.append(pred_succ)
graphs_pred.append(succ_graph)
graphs_gt.append(gt_graph)
# preds_angles_color.append(pred_angles_color)
# preds_drivable.append(pred_drivable)
sample_ids.append(sample_id)
# Visualize
if do_visualization:
print(sample_id)
plot_every = 10
if image_counter % plot_every == 0 and image_counter > 0:
fig, ax = plt.subplots(plot_every, 4, sharex=True, sharey=True, figsize=(10, 30), dpi=600)
plt.tight_layout()
plt.subplots_adjust(wspace=0, hspace=0)
for i in range(plot_every):
[ax[i, j].axis("off") for j in range(4)]
ax[i, 0].set_title(sample_ids[image_counter-i])
img = cv2.cvtColor(images[image_counter-i], cv2.COLOR_BGR2RGB)
visualize_graph(graphs_gt[image_counter-i], ax[i, 0], aerial_image=img, node_color='white', edge_color='white')
visualize_graph(graphs_pred[image_counter-i], ax[i, 1], aerial_image=img)
visualize_graph(graphs_gt[image_counter-i], ax[i, 2], aerial_image=img, node_color='white', edge_color='white')
visualize_graph(graphs_pred[image_counter-i], ax[i, 2], aerial_image=img)
ax[i, 3].imshow(images_succ[image_counter-i], cmap="viridis")
# ax[i, 4].imshow(preds_drivable[image_counter - i])
# ax[i, 5].imshow(preds_angles_color[image_counter - i])
svg_filename = "/data/autograph/evaluations/eval_succ/viz/{:04d}.svg".format(image_counter)
# plt.savefig(svg_filename)
# # open svg file and delete line containing "<g id="figure_1">"
# with open(svg_filename, "r") as f:
# lines = f.readlines()
# with open(svg_filename, "w") as f:
# for line in lines:
# if "<g id=\"figure_1\">" not in line:
# f.write(line)
plt.savefig(svg_filename.replace(".svg", ".png"))
pickle.dump(pred_dict, open(picklefile, "wb"))
if __name__ == "__main__":
split = "test"
skeleton_thresholds = [0.05]
# best threshold tracklets: 0.02
# best threshold lanegraph: 0.02
model_dicts = [
{"model_path": "/data/autograph/checkpoints/visionary-voice-212/e-030.pth", # tracklets
"full_model_pth": "/data/autograph/checkpoints/serene-voice-204/e-016.pth", # tracklets
"model_notes": "tracklets_joint|successor|rgb",
"input_layers": "rgb"},
{"model_path": "/data/autograph/checkpoints/fallen-oath-217/e-050.pth", # lanegraph
"full_model_pth": "/data/autograph/checkpoints/dulcet-water-210/e-058.pth", # lanegraph
"model_notes": "tracklets_joint|successor|rgb",
"input_layers": "rgb"},
]
results_df = pd.DataFrame(columns=["model_name", "model_notes", "split", "iou", "apls", "geo_precision",
"geo_recall","topo_precision","topo_recall","sda@20","sda@50"])
for model_dict in model_dicts:
succ_model_pth = model_dict["model_path"]
model_notes = model_dict["model_notes"]
input_layers = model_dict["input_layers"]
full_model_pth = model_dict["full_model_pth"]
model_name = succ_model_pth.split("/")[-2:]
model_name = "_".join(model_name)
model_identifier = model_name + "_" + model_notes + "_" + split
for skeleton_threshold in skeleton_thresholds:
print("model: {}, skeleton_threshold: {}".format(model_identifier, skeleton_threshold))
predictions_file = '/data/autograph/evaluations/eval_succ/{}_{:.2f}_predictions.pickle'.format(model_identifier, skeleton_threshold)
run_successor_lgp(full_model_pth=None,
succ_model_pth=succ_model_pth,
input_layers=input_layers,
skeleton_threshold=skeleton_threshold,
picklefile=predictions_file,
split=split)
results_dict = evaluate(annotation_file="/home/zuern/lanegnn-dev/urbanlanegraph_evaluator/annotations_successor_lgp_{}.pickle".format(split),
user_submission_file=predictions_file,
phase_codename="phase_successor_lgp",
split=split,)
print("avg")
for k, v in results_dict['submission_result'][split]["avg"].items():
print(" {}: {:.3f}".format(k, v))
# save dict
pickle.dump(results_dict, open("/data/autograph/evaluations/eval_succ/{}_results_dict.pickle".format(model_identifier), "wb"))
# save results
results_df = results_df.append({"skeleton_threshold": skeleton_threshold,
"model_name": model_name,
"model_notes": model_notes,
"split": split,
"iou": results_dict['submission_result'][split]["avg"]["Graph IoU"],
"apls": results_dict['submission_result'][split]["avg"]["APLS"],
"geo_precision": results_dict['submission_result'][split]["avg"]["GEO Precision"],
"geo_recall": results_dict['submission_result'][split]["avg"]["GEO Recall"],
"topo_precision": results_dict['submission_result'][split]["avg"]["TOPO Precision"],
"topo_recall": results_dict['submission_result'][split]["avg"]["TOPO Recall"],
"sda@20": results_dict['submission_result'][split]["avg"]["SDA20"],
"sda@50": results_dict['submission_result'][split]["avg"]["SDA50"]
},
ignore_index=True)
results_df.to_csv("/data/autograph/evaluations/eval_succ/results_all.csv", index=False)