forked from fieldtrip/fieldtrip
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathft_artifact_threshold.m
317 lines (284 loc) · 13 KB
/
ft_artifact_threshold.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
function [cfg, artifact] = ft_artifact_threshold(cfg, data)
% FT_ARTIFACT_THRESHOLD scans data segments of interest for channels in which the
% signal exceeds a specified minimum or maximum value, or in which the peak-to-peak
% range within the trial exceeds a specified threshold.
%
% Use as
% [cfg, artifact] = ft_artifact_threshold(cfg)
% with the configuration options
% cfg.dataset = string with the filename
% or
% cfg.headerfile = string with the filename
% cfg.datafile = string with the filename
% and optionally
% cfg.headerformat
% cfg.dataformat
%
% Alternatively you can use it as
% [cfg, artifact] = ft_artifact_threshold(cfg, data)
% where the input data is a structure as obtained from FT_PREPROCESSING.
%
% In both cases the configuration should also contain
% cfg.trl = structure that defines the data segments of interest, see FT_DEFINETRIAL
% cfg.continuous = 'yes' or 'no' whether the file contains continuous data
% and
% cfg.artfctdef.threshold.channel = cell-array with channel labels
% cfg.artfctdef.threshold.bpfilter = 'no' or 'yes' (default = 'yes')
% cfg.artfctdef.threshold.bpfreq = [0.3 30]
% cfg.artfctdef.threshold.bpfiltord = 4
%
% In the same way as specifying the options for band-pass filtering, it is also
% possible to specify lpfilter, hpfilter, bsfilter, dftfilter or medianfilter, see
% FT_PREPROCESSING.
%
% The detection of artifacts is done according to the following settings,
% you should specify at least one of these thresholds
% cfg.artfctdef.threshold.min = value in uV or T, default -inf
% cfg.artfctdef.threshold.max = value in uV or T, default inf
% cfg.artfctdef.threshold.onset = value in uV or T, default inf
% cfg.artfctdef.threshold.offset = value in uV or T, default inf
%
% When cfg.artfctdef.threshold.onset and offset are used, the rising and falling
% flank are thresholded with different values. In case onset and offset are both
% positive, the data will be thresholded above their values. In case both onset and
% offset are negative, the data will be thresholded below their values.
%
% Note that this function does not support artifactpadding or filterpadding.
%
% The output argument "artifact" is a Nx2 matrix comparable to the "trl" matrix of
% FT_DEFINETRIAL. The first column of which specifying the beginsamples of an
% artifact period, the second column contains the endsamples of the artifactperiods.
%
% To facilitate data-handling and distributed computing, you can use
% cfg.inputfile = ...
% to read the input data from a *.mat file on disk. This mat files should contain
% only a single variable named 'data', corresponding to the input structure.
%
% See also FT_REJECTARTIFACT, FT_ARTIFACT_CLIP, FT_ARTIFACT_ECG, FT_ARTIFACT_EOG,
% FT_ARTIFACT_JUMP, FT_ARTIFACT_MUSCLE, FT_ARTIFACT_THRESHOLD, FT_ARTIFACT_ZVALUE
% Copyright (C) 2003-2011, Robert Oostenveld, SMI, FCDC
%
% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id$
% these are used by the ft_preamble/ft_postamble function and scripts
ft_revision = '$Id$';
ft_nargin = nargin;
ft_nargout = nargout;
% do the general setup of the function
ft_defaults
ft_preamble init
ft_preamble provenance
ft_preamble loadvar data
% the ft_abort variable is set to true or false in ft_preamble_init
if ft_abort
return
end
% check if the input cfg is valid for this function
cfg = ft_checkconfig(cfg, 'renamed', {'datatype', 'continuous'});
cfg = ft_checkconfig(cfg, 'renamedval', {'continuous', 'continuous', 'yes'});
% set the default options
cfg.continuous = ft_getopt(cfg, 'continuous', []);
cfg.headerformat = ft_getopt(cfg, 'headerformat', []);
cfg.dataformat = ft_getopt(cfg, 'dataformat', []);
cfg.feedback = ft_getopt(cfg, 'feedback', 'text');
cfg.representation = ft_getopt(cfg, 'representation', 'numeric'); % numeric or table
% set the default artifact detection parameters
cfg.artfctdef = ft_getopt(cfg, 'artfctdef');
cfg.artfctdef.threshold = ft_getopt(cfg.artfctdef, 'threshold');
cfg.artfctdef.threshold.channel = ft_getopt(cfg.artfctdef.threshold, 'channel', 'all');
cfg.artfctdef.threshold.bpfilter = ft_getopt(cfg.artfctdef.threshold, 'bpfilter', 'yes');
cfg.artfctdef.threshold.bpfreq = ft_getopt(cfg.artfctdef.threshold, 'bpfreq', [0.3 30]);
cfg.artfctdef.threshold.bpfiltord = ft_getopt(cfg.artfctdef.threshold, 'bpfiltord', 4);
cfg.artfctdef.threshold.range = ft_getopt(cfg.artfctdef.threshold, 'range', inf);
cfg.artfctdef.threshold.min = ft_getopt(cfg.artfctdef.threshold, 'min', -inf);
cfg.artfctdef.threshold.max = ft_getopt(cfg.artfctdef.threshold, 'max', inf);
cfg.artfctdef.threshold.onset = ft_getopt(cfg.artfctdef.threshold, 'onset', []);
cfg.artfctdef.threshold.offset = ft_getopt(cfg.artfctdef.threshold, 'offset', []);
% the data is either passed into the function by the user or read from file with cfg.inputfile
hasdata = exist('data', 'var');
% read the header, or get it from the input data
if ~hasdata
cfg = ft_checkconfig(cfg, 'dataset2files', 'yes');
cfg = ft_checkconfig(cfg, 'required', {'headerfile', 'datafile'});
hdr = ft_read_header(cfg.headerfile, 'headerformat', cfg.headerformat);
else
data = ft_checkdata(data, 'datatype', 'raw', 'hassampleinfo', 'yes');
cfg = ft_checkconfig(cfg, 'forbidden', {'dataset', 'headerfile', 'datafile'});
hdr = ft_fetch_header(data);
end
% set default cfg.continuous
if isempty(cfg.continuous)
if hdr.nTrials==1
cfg.continuous = 'yes';
else
cfg.continuous = 'no';
end
end
% get the specification of the data segments that should be scanned for artifacts
if ~isfield(cfg, 'trl') && hasdata
trl = data.sampleinfo;
for k = 1:numel(data.trial)
trl(k,3) = time2offset(data.time{k}, data.fsample);
end
elseif isfield(cfg, 'trl') && ischar(cfg.trl)
trl = loadvar(cfg.trl, 'trl');
elseif isfield(cfg, 'trl') && isnumeric(cfg.trl)
trl = cfg.trl;
else
ft_error('cannot determine which segments of data to scan for artifacts');
end
if ~isempty(cfg.artfctdef.threshold.onset) || ~isempty(cfg.artfctdef.threshold.offset)
if cfg.artfctdef.threshold.onset>0 && cfg.artfctdef.threshold.offset>0
direction = 'up';
elseif cfg.artfctdef.threshold.onset<0 && cfg.artfctdef.threshold.offset<0
direction = 'down';
else
error('incorrect specification of onset and offset');
end
else
direction = 'none';
end
% get the remaining settings
artfctdef = cfg.artfctdef.threshold;
artfctdef.trl = trl;
ntrial = size(trl,1);
label = ft_channelselection(artfctdef.channel, hdr.label);
chanindx = match_str(hdr.label, label);
nchan = length(chanindx);
artifact = table();
ft_progress('init', cfg.feedback, ['searching for artifacts in ' num2str(nchan) ' channels']);
for trlop=1:ntrial
ft_progress(trlop/ntrial, 'searching in trial %d from %d\n', trlop, ntrial);
if hasdata
dat = ft_fetch_data(data, 'header', hdr, 'begsample', trl(trlop,1), 'endsample', trl(trlop,2), 'chanindx', chanindx, 'checkboundary', strcmp(cfg.continuous, 'no'));
else
dat = ft_read_data(cfg.datafile, 'header', hdr, 'begsample', trl(trlop,1), 'endsample', trl(trlop,2), 'chanindx', chanindx, 'checkboundary', strcmp(cfg.continuous, 'no'), 'dataformat', cfg.dataformat);
end
% determine the length of the data in this trial
nsample = trl(trlop,2)-trl(trlop,1)+1;
if size(trl,2)>2
time = offset2time(trl(trlop,3), hdr.Fs, nsample);
else
time = offset2time(0, hdr.Fs, nsample);
end
% only do the preprocessing and filtering if there is an option that suggests to have an effect
status = struct2cell(artfctdef);
status = status(cellfun(@(x) ischar(x), status));
if any(ismember(status, {'yes', 'abs', 'complex', 'real', 'imag', 'absreal', 'absimag', 'angle'}))
dat = preproc(dat, label, time, artfctdef);
end
for sgnlop=1:nchan
% make a vector that indicates for each sample whether it exceeds the threshold
artval = false(1, nsample);
artval = artval | any(dat(sgnlop,:)<=artfctdef.min,1);
artval = artval | any(dat(sgnlop,:)>=artfctdef.max,1);
% compute the range as the maximum of the peak-to-peak values for each channel
ptpval = max(dat(sgnlop,:)) - min(dat(sgnlop,:));
if any(ptpval>=artfctdef.range)
artval(:) = true; % mark the whole segment as bad
end
% this is when a different onset and offset are specified
switch direction
case 'up'
onset = find(diff([0 dat(sgnlop,:)>=artfctdef.onset])>0); % find all rising flanks
offset = nan(size(onset));
for i=1:numel(onset)
rem = dat(sgnlop,onset(i)+1:end); % this is the remaining data following the artifact onset
rem = (rem<=artfctdef.offset); % threshold for the offset
if any(rem)
offset(i) = find(rem, 1, 'first'); % find the falling flank
else
offset(i) = length(rem); % take the last sample
end
offset(i) = offset(i) + onset(i);
% add it to the other artifacts in the boolean vector
artval(onset(i):offset(i)) = true;
end
case 'down'
onset = find(diff([0 dat(sgnlop,:)<=artfctdef.onset])>0); % find all rising flanks
offset = nan(size(onset));
for i=1:numel(onset)
rem = dat(sgnlop,onset(i)+1:end); % this is the remaining data following the artifact onset
rem = (rem>=artfctdef.offset);
if any(rem)
offset(i) = find(rem, 1, 'first'); % find the falling flank
else
offset(i) = length(rem); % take the last sample
end
offset(i) = offset(i) + onset(i);
% add it to the other artifacts in the boolean vector
artval(onset(i):offset(i)) = true;
end
case 'none'
% nothing to do
end
% to avoid confusion with the offset that is used further down
clear onset offset
begsample = find(diff([0 artval])>0)';
endsample = find(diff([artval 0])<0)';
offset = nan(size(begsample)); % the offset of the peak relative to the segment, just like in FT_DEFINETRIAL
channel = repmat(label(sgnlop), size(begsample));
% determine the sample at which the signal peaks
for i=1:numel(begsample)
seg = dat(sgnlop,begsample(i):endsample(i)); % get the segment of data
if all(seg>=artfctdef.max) || strcmp(direction, 'up')
[dum, indx] = max(seg);
offset(i) = 1 - indx; % relative to the start of the segment, 0 is the first sample, -1 is the 2nd, etc.
elseif all(seg<=artfctdef.min) || strcmp(direction, 'down')
[dum, indx] = min(seg);
offset(i) = 1 - indx; % relative to the start of the segment, 0 is the first sample, -1 is the 2nd, etc.
end % if up or down
end % for each artifact in this trial
% express them relative to the start of the data, not the start of the trial
begsample = begsample + trl(trlop,1) - 1;
endsample = endsample + trl(trlop,1) - 1;
% remember the parts where this channel exceeds the threshold as artifacts
if ~isempty(begsample)
artifact = vertcat(artifact, table(begsample, endsample, offset, channel));
end
end % for sgnlop
end % for trlop
ft_progress('close');
if strcmp(cfg.representation, 'numeric') && istable(artifact)
if isempty(artifact)
% an empty table does not have columns
artifact = zeros(0,3);
else
% convert the table to a numeric array with the columns begsample, endsample and offset
artifact = table2array(artifact(:,1:3));
end
elseif strcmp(cfg.representation, 'table') && isnumeric(artifact)
if isempty(artifact)
% an empty table does not have columns
artifact = table();
else
% convert the numeric array to a table with the columns begsample, endsample and offset
begsample = artifact(:,1);
endsample = artifact(:,2);
offset = artifact(:,3);
artifact = table(begsample, endsample, offset);
end
end
% remember the details that were used here and store the detected artifacts
cfg.artfctdef.threshold = artfctdef;
cfg.artfctdef.threshold.artifact = artifact;
ft_notice('detected %d artifacts\n', size(artifact,1));
% do the general cleanup and bookkeeping at the end of the function
ft_postamble provenance
ft_postamble previous data
ft_postamble savevar