-
Notifications
You must be signed in to change notification settings - Fork 9
/
setup.py
199 lines (175 loc) · 6.1 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
# Copyright (c) 2023 Kakao Brain. All Rights Reserved.
# ------------------------------------------------------------------------------
# Modified from OpenFold (https://github.com/aqlaboratory/openfold)
# Copyright 2021 AlQuraishi Laboratory
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from setuptools import setup, Extension, find_packages
import subprocess
import ctypes
from torch.utils.cpp_extension import BuildExtension, CppExtension, CUDAExtension, CUDA_HOME
def get_nvidia_cc():
"""
Returns a tuple containing the Compute Capability of the first GPU
installed in the system (formatted as a tuple of strings) and an error
message. When the former is provided, the latter is None, and vice versa.
Adapted from script by Jan Schlüte t
https://gist.github.com/f0k/63a664160d016a491b2cbea15913d549
"""
CUDA_SUCCESS = 0
libnames = [
'libcuda.so',
'libcuda.dylib',
'cuda.dll',
'/usr/local/cuda/compat/libcuda.so', # For Docker
]
for libname in libnames:
try:
cuda = ctypes.CDLL(libname)
except OSError:
continue
else:
break
else:
return None, "Could not load any of: " + ' '.join(libnames)
nGpus = ctypes.c_int()
cc_major = ctypes.c_int()
cc_minor = ctypes.c_int()
result = ctypes.c_int()
device = ctypes.c_int()
error_str = ctypes.c_char_p()
result = cuda.cuInit(0)
if result != CUDA_SUCCESS:
cuda.cuGetErrorString(result, ctypes.byref(error_str))
if error_str.value:
return None, error_str.value.decode()
else:
return None, "Unknown error: cuInit returned %d" % result
result = cuda.cuDeviceGetCount(ctypes.byref(nGpus))
if result != CUDA_SUCCESS:
cuda.cuGetErrorString(result, ctypes.byref(error_str))
return None, error_str.value.decode()
if nGpus.value < 1:
return None, "No GPUs detected"
result = cuda.cuDeviceGet(ctypes.byref(device), 0)
if result != CUDA_SUCCESS:
cuda.cuGetErrorString(result, ctypes.byref(error_str))
return None, error_str.value.decode()
if cuda.cuDeviceComputeCapability(ctypes.byref(cc_major), ctypes.byref(cc_minor), device) != CUDA_SUCCESS:
return None, "Compute Capability not found"
major = cc_major.value
minor = cc_minor.value
return (major, minor), None
version_dependent_macros = [
'-DVERSION_GE_1_1',
'-DVERSION_GE_1_3',
'-DVERSION_GE_1_5',
]
extra_cuda_flags = [
'-std=c++14',
'-maxrregcount=50',
'-U__CUDA_NO_HALF_OPERATORS__',
'-U__CUDA_NO_HALF_CONVERSIONS__',
'--expt-relaxed-constexpr',
'--expt-extended-lambda'
]
def get_cuda_bare_metal_version(cuda_dir):
if cuda_dir==None:
print("CUDA is not found, cpu version is installed")
return None, -1, 0
else:
raw_output = subprocess.check_output([cuda_dir + "/bin/nvcc", "-V"], universal_newlines=True)
output = raw_output.split()
release_idx = output.index("release") + 1
release = output[release_idx].split(".")
bare_metal_major = release[0]
bare_metal_minor = release[1][0]
return raw_output, bare_metal_major, bare_metal_minor
compute_capabilities = set([
(3, 7), # K80, e.g.
(5, 2), # Titan X
(6, 1), # GeForce 1000-series
])
compute_capabilities.add((7, 0))
_, bare_metal_major, _ = get_cuda_bare_metal_version(CUDA_HOME)
if int(bare_metal_major) >= 11:
compute_capabilities.add((8, 0))
compute_capability, _ = get_nvidia_cc()
if compute_capability is not None:
compute_capabilities = set([compute_capability])
cc_flag = []
for major, minor in list(compute_capabilities):
cc_flag.extend([
'-gencode',
f'arch=compute_{major}{minor},code=sm_{major}{minor}',
])
extra_cuda_flags += cc_flag
if bare_metal_major != -1:
modules = [CUDAExtension(
name="attn_core_inplace_cuda",
sources=[
"solvent/utils/kernel/cuda_native/csrc/softmax_cuda.cpp",
"solvent/utils/kernel/cuda_native/csrc/softmax_cuda_kernel.cu",
],
include_dirs=[
os.path.join(
os.path.dirname(os.path.abspath(__file__)),
'solvent/utils/kernel/cuda_native/csrc/'
)
],
extra_compile_args={
'cxx': ['-O3'] + version_dependent_macros,
'nvcc': (
['-O3', '--use_fast_math'] +
version_dependent_macros +
extra_cuda_flags
),
}
)]
else:
modules = [CppExtension(
name="attn_core_inplace_cuda",
sources=[
"solvent/utils/kernel/cuda_native/csrc/softmax_cuda.cpp",
"solvent/utils/kernel/cuda_native/csrc/softmax_cuda_stub.cpp",
],
extra_compile_args={
'cxx': ['-O3'],
}
)]
setup(
name='solvent',
version='0.0.1',
description='Protein Folding Framework',
author='KakaoBrain',
license='Apache License, Version 2.0',
packages=find_packages(exclude=["tools"]),
include_package_data=True,
package_data={
"solvent": [
'utils/kernel/cuda_native/*',
'utils/kernel/triton/*',
'utils/kernel/cuda_native/csrc/*'
],
"": ["resources/stereo_chemical_props.txt"]
},
ext_modules=modules,
cmdclass={'build_ext': BuildExtension},
classifiers=[
'License :: OSI Approved :: Apache Software License',
'Operating System :: POSIX :: Linux',
'Programming Language :: Python :: 3.7,'
'Topic :: Scientific/Engineering :: Artificial Intelligence',
],
)