-
Notifications
You must be signed in to change notification settings - Fork 481
/
Copy pathtrain.py
70 lines (62 loc) · 4.17 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
# -*- coding: utf-8 -*-
from __future__ import print_function
from __future__ import absolute_import
import tensorflow as tf
import argparse
from model.unet import UNet
parser = argparse.ArgumentParser(description='Train')
parser.add_argument('--experiment_dir', dest='experiment_dir', required=True,
help='experiment directory, data, samples,checkpoints,etc')
parser.add_argument('--experiment_id', dest='experiment_id', type=int, default=0,
help='sequence id for the experiments you prepare to run')
parser.add_argument('--image_size', dest='image_size', type=int, default=256,
help="size of your input and output image")
parser.add_argument('--L1_penalty', dest='L1_penalty', type=int, default=100, help='weight for L1 loss')
parser.add_argument('--Lconst_penalty', dest='Lconst_penalty', type=int, default=15, help='weight for const loss')
parser.add_argument('--Ltv_penalty', dest='Ltv_penalty', type=float, default=0.0, help='weight for tv loss')
parser.add_argument('--Lcategory_penalty', dest='Lcategory_penalty', type=float, default=1.0,
help='weight for category loss')
parser.add_argument('--embedding_num', dest='embedding_num', type=int, default=40,
help="number for distinct embeddings")
parser.add_argument('--embedding_dim', dest='embedding_dim', type=int, default=128, help="dimension for embedding")
parser.add_argument('--epoch', dest='epoch', type=int, default=100, help='number of epoch')
parser.add_argument('--batch_size', dest='batch_size', type=int, default=16, help='number of examples in batch')
parser.add_argument('--lr', dest='lr', type=float, default=0.001, help='initial learning rate for adam')
parser.add_argument('--schedule', dest='schedule', type=int, default=10, help='number of epochs to half learning rate')
parser.add_argument('--resume', dest='resume', type=int, default=1, help='resume from previous training')
parser.add_argument('--freeze_encoder', dest='freeze_encoder', type=int, default=0,
help="freeze encoder weights during training")
parser.add_argument('--fine_tune', dest='fine_tune', type=str, default=None,
help='specific labels id to be fine tuned')
parser.add_argument('--inst_norm', dest='inst_norm', type=int, default=0,
help='use conditional instance normalization in your model')
parser.add_argument('--sample_steps', dest='sample_steps', type=int, default=10,
help='number of batches in between two samples are drawn from validation set')
parser.add_argument('--checkpoint_steps', dest='checkpoint_steps', type=int, default=500,
help='number of batches in between two checkpoints')
parser.add_argument('--flip_labels', dest='flip_labels', type=int, default=None,
help='whether flip training data labels or not, in fine tuning')
args = parser.parse_args()
def main(_):
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
with tf.Session(config=config) as sess:
model = UNet(args.experiment_dir, batch_size=args.batch_size, experiment_id=args.experiment_id,
input_width=args.image_size, output_width=args.image_size, embedding_num=args.embedding_num,
embedding_dim=args.embedding_dim, L1_penalty=args.L1_penalty, Lconst_penalty=args.Lconst_penalty,
Ltv_penalty=args.Ltv_penalty, Lcategory_penalty=args.Lcategory_penalty)
model.register_session(sess)
if args.flip_labels:
model.build_model(is_training=True, inst_norm=args.inst_norm, no_target_source=True)
else:
model.build_model(is_training=True, inst_norm=args.inst_norm)
fine_tune_list = None
if args.fine_tune:
ids = args.fine_tune.split(",")
fine_tune_list = set([int(i) for i in ids])
model.train(lr=args.lr, epoch=args.epoch, resume=args.resume,
schedule=args.schedule, freeze_encoder=args.freeze_encoder, fine_tune=fine_tune_list,
sample_steps=args.sample_steps, checkpoint_steps=args.checkpoint_steps,
flip_labels=args.flip_labels)
if __name__ == '__main__':
tf.app.run()