-
Notifications
You must be signed in to change notification settings - Fork 2
/
face_swap.py
executable file
·179 lines (147 loc) · 5.84 KB
/
face_swap.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
#! /usr/bin/env python
import os
import cv2
import json
import argparse
import numpy as np
import scipy.spatial as spatial
## 3D Transform
def bilinear_interpolate(img, coords):
""" Interpolates over every image channel
http://en.wikipedia.org/wiki/Bilinear_interpolation
:param img: max 3 channel image
:param coords: 2 x _m_ array. 1st row = xcoords, 2nd row = ycoords
:returns: array of interpolated pixels with same shape as coords
"""
int_coords = np.int32(coords)
x0, y0 = int_coords
dx, dy = coords - int_coords
# 4 Neighour pixels
q11 = img[y0, x0]
q21 = img[y0, x0 + 1]
q12 = img[y0 + 1, x0]
q22 = img[y0 + 1, x0 + 1]
btm = q21.T * dx + q11.T * (1 - dx)
top = q22.T * dx + q12.T * (1 - dx)
inter_pixel = top * dy + btm * (1 - dy)
return inter_pixel.T
def grid_coordinates(points):
""" x,y grid coordinates within the ROI of supplied points
:param points: points to generate grid coordinates
:returns: array of (x, y) coordinates
"""
xmin = np.min(points[:, 0])
xmax = np.max(points[:, 0]) + 1
ymin = np.min(points[:, 1])
ymax = np.max(points[:, 1]) + 1
return np.asarray([(x, y) for y in range(ymin, ymax)
for x in range(xmin, xmax)], np.uint32)
def process_warp(src_img, result_img, tri_affines, dst_points, delaunay):
"""
Warp each triangle from the src_image only within the
ROI of the destination image (points in dst_points).
"""
roi_coords = grid_coordinates(dst_points)
# indices to vertices. -1 if pixel is not in any triangle
roi_tri_indices = delaunay.find_simplex(roi_coords)
for simplex_index in range(len(delaunay.simplices)):
coords = roi_coords[roi_tri_indices == simplex_index]
num_coords = len(coords)
out_coords = np.dot(tri_affines[simplex_index],
np.vstack((coords.T, np.ones(num_coords))))
x, y = coords.T
result_img[y, x] = bilinear_interpolate(src_img, out_coords)
return None
def triangular_affine_matrices(vertices, src_points, dst_points):
"""
Calculate the affine transformation matrix for each
triangle (x,y) vertex from dst_points to src_points
:param vertices: array of triplet indices to corners of triangle
:param src_points: array of [x, y] points to landmarks for source image
:param dst_points: array of [x, y] points to landmarks for destination image
:returns: 2 x 3 affine matrix transformation for a triangle
"""
ones = [1, 1, 1]
for tri_indices in vertices:
src_tri = np.vstack((src_points[tri_indices, :].T, ones))
dst_tri = np.vstack((dst_points[tri_indices, :].T, ones))
mat = np.dot(src_tri, np.linalg.inv(dst_tri))[:2, :]
yield mat
def warp_image_3d(src_img, src_points, dst_points, dst_shape, dtype=np.uint8):
rows, cols = dst_shape[:2]
result_img = np.zeros((rows, cols, 3), dtype=dtype)
delaunay = spatial.Delaunay(dst_points)
tri_affines = np.asarray(list(triangular_affine_matrices(
delaunay.simplices, src_points, dst_points)))
process_warp(src_img, result_img, tri_affines, dst_points, delaunay)
return result_img
## 2D Transform
def transformation_from_points(points1, points2):
points1 = points1.astype(np.float64)
points2 = points2.astype(np.float64)
c1 = np.mean(points1, axis=0)
c2 = np.mean(points2, axis=0)
points1 -= c1
points2 -= c2
s1 = np.std(points1)
s2 = np.std(points2)
points1 /= s1
points2 /= s2
U, S, Vt = np.linalg.svd(np.dot(points1.T, points2))
R = (np.dot(U, Vt)).T
return np.vstack([np.hstack([s2 / s1 * R,
(c2.T - np.dot(s2 / s1 * R, c1.T))[:, np.newaxis]]),
np.array([[0., 0., 1.]])])
def warp_image_2d(im, M, dshape):
output_im = np.zeros(dshape, dtype=im.dtype)
cv2.warpAffine(im,
M[:2],
(dshape[1], dshape[0]),
dst=output_im,
borderMode=cv2.BORDER_TRANSPARENT,
flags=cv2.WARP_INVERSE_MAP)
return output_im
## Generate Mask
def mask_from_points(size, points):
radius = 10 # kernel size
kernel = np.ones((radius, radius), np.uint8)
mask = np.zeros(size, np.uint8)
cv2.fillConvexPoly(mask, cv2.convexHull(points), 255)
mask = cv2.erode(mask, kernel)
return mask
## Color Correction
def correct_colours(im1, im2, landmarks1):
COLOUR_CORRECT_BLUR_FRAC = 0.75
LEFT_EYE_POINTS = list(range(42, 48))
RIGHT_EYE_POINTS = list(range(36, 42))
blur_amount = COLOUR_CORRECT_BLUR_FRAC * np.linalg.norm(
np.mean(landmarks1[LEFT_EYE_POINTS], axis=0) -
np.mean(landmarks1[RIGHT_EYE_POINTS], axis=0))
blur_amount = int(blur_amount)
if blur_amount % 2 == 0:
blur_amount += 1
im1_blur = cv2.GaussianBlur(im1, (blur_amount, blur_amount), 0)
im2_blur = cv2.GaussianBlur(im2, (blur_amount, blur_amount), 0)
# Avoid divide-by-zero errors.
im2_blur = im2_blur.astype(int)
im2_blur += 128*(im2_blur <= 1)
result = im2.astype(np.float64) * im1_blur.astype(np.float64) / im2_blur.astype(np.float64)
result = np.clip(result, 0, 255).astype(np.uint8)
return result
## Copy-and-paste
def apply_mask(img, mask):
""" Apply mask to supplied image
:param img: max 3 channel image
:param mask: [0-255] values in mask
:returns: new image with mask applied
"""
masked_img=cv2.bitwise_and(img,img,mask=mask)
return masked_img
## Alpha blending
def alpha_feathering(src_img, dest_img, img_mask, blur_radius=15):
mask = cv2.blur(img_mask, (blur_radius, blur_radius))
mask = mask / 255.0
result_img = np.empty(src_img.shape, np.uint8)
for i in range(3):
result_img[..., i] = src_img[..., i] * mask + dest_img[..., i] * (1-mask)
return result_img