-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
101 lines (89 loc) · 2.56 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
import argparse
import torch
from lightning import Trainer, seed_everything
from lightning.pytorch.callbacks import (
LearningRateMonitor,
ModelSummary,
ModelCheckpoint,
StochasticWeightAveraging,
)
from lightning.pytorch.loggers import WandbLogger
from lightning.pytorch.utilities import measure_flops
from digitnet import EMNISTDataModule, MNISTDataModule, Model
seed_everything(42, workers=True, verbose=False)
def main(args: argparse.Namespace):
# Load the data
if args.dataset == "mnist":
data = MNISTDataModule()
elif args.dataset == "emnist":
data = EMNISTDataModule()
else:
raise ValueError(f"Unknown dataset: {args.dataset}")
data.prepare_data()
data.setup()
# Load the model
model = Model(
in_channels=1,
width=4,
num_classes=len(data.labels),
labels=data.labels,
layers_per_block=(1, 1, 6, 1),
mult_per_layer=(1, 2, 4, 8),
)
# Create logger
logger = WandbLogger(
project="digitnet",
save_dir="logs",
tags=[args.dataset],
save_code=True,
offline=False,
log_model=True,
)
logger.watch(model)
logger.log_hyperparams(
{
"num_params": sum(p.numel() for p in model.parameters()),
"fwd_flops": measure_flops(model, lambda: model(torch.randn(1, 1, 32, 32))),
"fwd_and_bwd_flops": measure_flops(
model,
lambda: model(torch.randn(1, 1, 32, 32)),
lambda y: torch.nn.functional.cross_entropy(
model(torch.randn(1, 1, 32, 32)), y
),
),
}
)
# Train the model
trainer = Trainer(
max_epochs=10,
deterministic=True,
logger=logger,
callbacks=[
ModelSummary(max_depth=2),
LearningRateMonitor(
logging_interval="step",
log_momentum=True,
log_weight_decay=True,
),
StochasticWeightAveraging(
swa_lrs=8e-4,
swa_epoch_start=10,
annealing_epochs=2,
device=None,
),
],
enable_model_summary=False,
)
trainer.fit(model, data)
trainer.test(model, data)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--dataset",
type=str,
default="mnist",
choices=["mnist", "emnist"],
help="select the dataset to use",
)
args = parser.parse_args()
main(args)