This script provides a unified approach to estimate performance for Large Language Models. It is based on pipelines provided by Optimum-Intel and allows to estimate performance for pytorch and openvino models, using almost the same code and precollected models.
python3 -m venv python-env
source python-env/bin/activate
pip install update --upgrade
pip install -r requirements.txt
The conversion script for preparing benchmarking models,
convert.py
allows to reproduce IRs stored on shared drive.
Prerequisites:
install conversion dependencies using requirements.txt
Usage:
python convert.py --model_id <model_id_or_path> --output_dir <out_dir>
Paramters:
--model_id
- model_id for downloading from huggngface_hub (https://huggingface.co/models) or path with directory where pytorch model located.--output_dir
- output directory for saving OpenVINO model--precision
- (optional, default FP32), precision for model conversion FP32 or FP16--save_orig
- flag for saving original pytorch model, model will be located in<output_dir>/pytorch
subdirectory.--compress_weights
- The weight compression option, INT8 - INT8 weights, 4BIT_DEFAULT - for 4-bit weights compression with predefined configuration, INT4_SYM - for INT4 compressed weights with symmetric quantization, INT4_ASYM - for INT4 compressed weights with assymetric quantization. You can specify multiple backends separated by a space.--compress_weights_backends
- (optional, default openvino) backends for weights compression, this option has an effect only with--compress_weights
. You can specify multiple backends separated by a space.--ratio
- Compression ratio between primary and backup precision, e.g. INT4/INT8.--group_size
- Size of the group of weights that share the same quantization parameters
Usage example:
python convert.py --model_id meta-llama/Llama-2-7b-chat-hf --output_dir models/llama-2-7b-chat
the result of running the command will have the following file structure:
|-llama-2-7b-chat
|-pytorch
|-dldt
|-FP32
|-openvino_model.xml
|-openvino_model.bin
|-config.json
|-added_tokens.json
|-tokenizer_config.json
|-tokenizer.json
|-tokenizer.model
|-special_tokens_map.json
Prerequisites:
install benchmarking dependencies using requirements.txt
pip install -r requirements.txt
note: You can specify the installed openvino version through pip install
# e.g.
pip install openvino==2023.2.0
python benchmark.py -m <model> -d <device> -r <report_csv> -f <framework> -p <prompt text> -n <num_iters>
# e.g.
python benchmark.py -m models/llama-2-7b-chat/pytorch/dldt/FP32 -n 2
python benchmark.py -m models/llama-2-7b-chat/pytorch/dldt/FP32 -p "What is openvino?" -n 2
python benchmark.py -m models/llama-2-7b-chat/pytorch/dldt/FP32 -pf prompts/llama-2-7b-chat_l.jsonl -n 2
Parameters:
-m
- model path-d
- inference device (default=cpu)-r
- report csv-f
- framework (default=ov)-p
- interactive prompt text-pf
- path of JSONL file including interactive prompts-n
- number of benchmarking iterations, if the value greater 0, will exclude the first iteration. (default=0)
python ./benchmark.py -h # for more information
The option --torch_compile_backend
uses torch.compile()
to speed up
the PyTorch code by compiling it into optimized kernels using a selected backend.
Prerequisites: install benchmarking dependencies using requirements.txt
pip install -r requirements/requirements.txt
In order to run the torch.compile()
on CUDA GPU, install additionally the nightly PyTorch version:
pip install --pre torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/cu118
Add the option --torch_compile_backend
with the desired backend: pytorch
or openvino
(default) while running the benchmarking script:
python ./benchmark.py -m models/llama-2-7b-chat/pytorch -d CPU --torch_compile_backend openvino
Note
If you encounter AttributeError
, please check NOTES.md which provides solutions to the known errors.