From aa46847b025a4056c5c3a51bb723311bdd2d32fa Mon Sep 17 00:00:00 2001 From: Qianli Scott Zhu Date: Mon, 23 Oct 2023 12:16:11 -0700 Subject: [PATCH] Fix numpy conversion for tf MirroredVariable. This is a corner case that np.array requires the return type of __array__ to be an array, and scalar will fail the type check. --- integration_tests/tf_distribute_training_test.py | 12 ++++++++++-- keras/backend/common/variables.py | 6 +++++- keras/backend/common/variables_test.py | 14 ++++++++++++++ 3 files changed, 29 insertions(+), 3 deletions(-) diff --git a/integration_tests/tf_distribute_training_test.py b/integration_tests/tf_distribute_training_test.py index acff6a624f7..904b8e9238e 100644 --- a/integration_tests/tf_distribute_training_test.py +++ b/integration_tests/tf_distribute_training_test.py @@ -7,6 +7,7 @@ from keras import metrics from keras import models from keras import optimizers +from keras.callbacks import LearningRateScheduler def test_model_fit(): @@ -31,6 +32,8 @@ def test_model_fit(): outputs = layers.Dense(16)(x) model = models.Model(inputs, outputs) + callbacks = [LearningRateScheduler(lambda _: 0.1)] + model.summary() x = np.random.random((5000, 100)) @@ -49,7 +52,12 @@ def test_model_fit(): jit_compile=False, ) history = model.fit( - x, y, batch_size=batch_size, epochs=epochs, validation_split=0.2 + x, + y, + batch_size=batch_size, + epochs=epochs, + validation_split=0.2, + callbacks=callbacks, ) print("History:") @@ -59,7 +67,7 @@ def test_model_fit(): with strategy.scope(): dataset = tf.data.Dataset.from_tensor_slices((x, y)).batch(batch_size) dataset = strategy.experimental_distribute_dataset(dataset) - history = model.fit(dataset, epochs=epochs) + history = model.fit(dataset, epochs=epochs, callbacks=callbacks) print("History:") print(history.history) diff --git a/keras/backend/common/variables.py b/keras/backend/common/variables.py index b5e171bb5bc..e787d5784a1 100644 --- a/keras/backend/common/variables.py +++ b/keras/backend/common/variables.py @@ -179,7 +179,11 @@ def __getitem__(self, idx): return self.value.__getitem__(idx) def __array__(self, dtype=None): - return self.value.__array__(dtype) + # We can't directly use self.value.__array__ here because of scalar. + # Numpy require this method to return as array like object. In the case + # of scalar, it will fail the type checking from numpy. We need to + # return a 0d array via numpy. + return np.asarray(self.numpy(), dtype) def __bool__(self): raise TypeError("A Keras Variable cannot be used as a boolean.") diff --git a/keras/backend/common/variables_test.py b/keras/backend/common/variables_test.py index d52ccce1209..10056d397c9 100644 --- a/keras/backend/common/variables_test.py +++ b/keras/backend/common/variables_test.py @@ -211,6 +211,20 @@ def test_variable_numpy(self): self.assertIsInstance(v.numpy(), np.ndarray) self.assertAllClose(v.numpy(), np.array([1, 2, 3])) + @pytest.mark.skipif( + backend.backend() != "tf", + reason="Tests for MirroredVariable under tf backend", + ) + def test_variable_numpy_scalar(self): + from keras.utils.module_utils import tensorflow as tf + strategy = tf.distribute.MirroredStrategy(["cpu:0", "cpu:1"]) + with strategy.scope(): + v = backend.Variable(initializer=0.0) + + np_value = backend.convert_to_numpy(v) + self.assertIsInstance(np_value, np.ndarray) + self.assertAllClose(np_value, 0.0) + def test_variable_value(self): """Test retrieving the value of a variable.""" v = backend.Variable(initializer=np.array([1, 2, 3]))