Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

The documentation for Conv1DTranspose does not state that the CPU does not support dilation rates larger than 1 #19870

Open
PhyllisJi opened this issue Jun 18, 2024 · 0 comments · May be fixed by #20737

Comments

@PhyllisJi
Copy link

Issue type

Documentation Bug

Have you reproduced the bug with TensorFlow Nightly?

Yes

Source

source

TensorFlow version

tf 2.14.0

Custom code

Yes

OS platform and distribution

Ubuntu 20.04

Mobile device

No response

Python version

No response

Bazel version

No response

GCC/compiler version

No response

CUDA/cuDNN version

No response

GPU model and memory

No response

Current behavior?

Throw Error:

tensorflow.python.framework.errors_impl.InvalidArgumentError: Exception encountered when calling layer 'conv4_mutated' (type Conv1DTranspose).

{{function_node __wrapped__Conv2DBackpropInput_device_/job:localhost/replica:0/task:0/device:CPU:0}} Current CPU implementations do not yet support dilation rates larger than 1. [Op:Conv2DBackpropInput] name: 

Call arguments received by layer 'conv4_mutated' (type Conv1DTranspose):
  • inputs=tf.Tensor(shape=(2, 2048, 64), dtype=float32)

Also, I'm not quite sure why the error message relates to Conv2DBackpropInput

Standalone code to reproduce the issue

import tensorflow as tf
import numpy as np
import os


os.environ['CUDA_VISIBLE_DEVICES'] = ''

def Model_HqTi1yjRFc7Dz1RLSJOvA9XX16R5Wp01(x):
    x = tf.keras.Input(shape=x)
    _x = x
    _zeropadding_x = tf.keras.layers.ZeroPadding1D(padding=(0, 0))(x)
    x = tf.keras.layers.Conv1D(filters=64, kernel_size=1, strides=1, padding="valid", data_format="channels_last", dilation_rate=1, groups=1, use_bias=True, name="conv1")(_zeropadding_x)
    x = tf.keras.layers.BatchNormalization(axis=-1, epsilon=1e-05, momentum=0.9, center=True, scale=True, name="bn1")(x)
    x = tf.nn.relu(x)
    _zeropadding_x = tf.keras.layers.ZeroPadding1D(padding=(0, 0))(x)
    x = tf.keras.layers.Conv1D(filters=64, kernel_size=1, strides=1, padding="valid", data_format="channels_last", dilation_rate=1, groups=1, use_bias=True, name="conv2")(_zeropadding_x)
    x = tf.keras.layers.BatchNormalization(axis=-1, epsilon=1e-05, momentum=0.9, center=True, scale=True, name="bn2")(x)
    x = tf.nn.relu(x)
    _zeropadding_x = tf.keras.layers.ZeroPadding1D(padding=(0, 0))(x)
    x = tf.keras.layers.Conv1D(filters=64, kernel_size=1, strides=1, padding="valid", data_format="channels_last", dilation_rate=1, groups=1, use_bias=True, name="conv3")(_zeropadding_x)
    x = tf.keras.layers.BatchNormalization(axis=-1, epsilon=1e-05, momentum=0.9, center=True, scale=True, name="bn3")(x)
    x = tf.keras.activations.relu(x)
    _zeropadding_x = tf.keras.layers.ZeroPadding1D(padding=(0, 0))(x)
    x = tf.keras.layers.Conv1DTranspose(filters=128, kernel_size=1, strides=1, padding="valid", output_padding=0, data_format="channels_last", dilation_rate=8, use_bias=True, name="conv4_mutated")(x)

    x = x
    model = tf.keras.models.Model(inputs=_x, outputs=x)
    return model


def go():
    with tf.device('/CPU:0'):
        shape = [2, 3, 2048]
        _numpy = np.random.random(shape).astype(np.float32)
        tf_input = tf.convert_to_tensor(_numpy.transpose(0, 2, 1), dtype=tf.float32)
        tf_model = Model_HqTi1yjRFc7Dz1RLSJOvA9XX16R5Wp01(tf_input.shape[1:])
        tf_output = tf_model(tf_input)




go()
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Projects
None yet
Development

Successfully merging a pull request may close this issue.

2 participants