-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathEMSeg.m
133 lines (111 loc) · 2.71 KB
/
EMSeg.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
function [mask,mu,v,p]=EMSeg(ima,k)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Expectation Maximization image segmentation
%
% Input:
% ima: grey color image
% k: Number of classes
% Output:
% mask: clasification image mask
% mu: vector of class means
% v: vector of class variances
% p: vector of class proportions
%
% Example: [mask,mu,v,p]=EMSeg(image,3);
%
% Author: Prof. Jose Vicente Manjon Herrera
% Email: [email protected]
% Date: 02-05-2006
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% check image
ima=double(ima);
copy=ima; % make a copy
ima=ima(:); % vectorize ima
mi=min(ima); % deal with negative
ima=ima-mi+1; % and zero values
m=max(ima);
s=length(ima);
% create image histogram
h=histogram(ima);
x=find(h);
h=h(x);
x=x(:);h=h(:);
% initiate parameters
mu=(1:k)*m/(k+1);
v=ones(1,k)*m;
p=ones(1,k)*1/k;
% start process
sml = mean(diff(x))/1000;
while(1)
% Expectation
prb = distribution(mu,v,p,x);
scal = sum(prb,2)+eps;
loglik=sum(h.*log(scal));
%Maximizarion
for j=1:k
pp=h.*prb(:,j)./scal;
p(j) = sum(pp);
mu(j) = sum(x.*pp)/p(j);
vr = (x-mu(j));
v(j)=sum(vr.*vr.*pp)/p(j)+sml;
end
p = p + 1e-3;
p = p/sum(p);
% Exit condition
prb = distribution(mu,v,p,x);
scal = sum(prb,2)+eps;
nloglik=sum(h.*log(scal));
if((nloglik-loglik)<0.0001) break; end;
clf
plot(x,h);
hold on
plot(x,prb,'g--')
plot(x,sum(prb,2),'r')
drawnow
end
% calculate mask
mu=mu+mi-1; % recover real range
s=size(copy);
mask=zeros(s);
for i=1:s(1),
for j=1:s(2),
for n=1:k
c(n)=distribution(mu(n),v(n),p(n),copy(i,j));
end
a=find(c==max(c));
mask(i,j)=a(1);
end
end
function y=distribution(m,v,g,x)
x=x(:);
m=m(:);
v=v(:);
g=g(:);
for i=1:size(m,1)
d = x-m(i);
amp = g(i)/sqrt(2*pi*v(i));
y(:,i) = amp*exp(-0.5 * (d.*d)/v(i));
end
function[h]=histogram(datos)
datos=datos(:);
ind=find(isnan(datos)==1);
datos(ind)=0;
ind=find(isinf(datos)==1);
datos(ind)=0;
tam=length(datos);
m=ceil(max(datos))+1;
h=zeros(1,m);
for i=1:tam,
f=floor(datos(i));
if(f>0 & f<(m-1))
a2=datos(i)-f;
a1=1-a2;
h(f) =h(f) + a1;
h(f+1)=h(f+1)+ a2;
end;
end;
h=conv(h,[1,2,3,2,1]);
h=h(3:(length(h)-2));
h=h/sum(h);