-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathplot_functions.R
152 lines (144 loc) · 8.58 KB
/
plot_functions.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
# boxplot
boxplot = function(dataset, variable, comparison, timepoint) {
dataset_subset = dataset %>%
filter(Day_chr == timepoint | Healthy == "yes") %>%
select(Classifier = comparison, Test = variable) %>%
filter(!Classifier == "")
dataset_subset %>%
ggplot(aes(x = Classifier, y = Test, fill = Classifier)) +
scale_fill_manual(values = complement_atlas_colors) +
geom_boxplot(alpha = 0.6, outlier.shape = NA, color = "grey40", size = 1) +
geom_point(aes(color = Classifier), alpha = 0.3, position = position_jitterdodge(jitter.width = 0.8), size = 3) +
scale_color_manual(values = complement_atlas_colors) +
theme_hc() +
ggtitle(paste(variable, "at", timepoint)) +
theme(
plot.title = element_text(size = 18, hjust = 0.5),
axis.text = element_text(size = 16),
legend.position = "null",
axis.title.x = element_blank(),
axis.title.y = element_blank(),
axis.ticks.y = element_blank())
}
# evolutionplot
evolutionplot = function(dataset, variable, comparison, groups = 5) {
dataset_summary = dataset %>%
select(Classifier = comparison, variable, Timepoint) %>%
filter(!Classifier == "") %>%
filter(Timepoint == 1 | Timepoint == 2) %>%
group_by(Classifier, Timepoint) %>%
get_summary_stats(variable, type = "mean_ci")
ggplot(dataset_summary[2:groups,], aes(x=Timepoint, y=mean, group=Classifier, color=Classifier)) +
# grey area representing 95% CI of controls - requires factorization
annotate("rect", xmin = 0.85, xmax = 2.15,
ymin = pull(dataset_summary[1,"mean"])+pull(dataset_summary[1,"ci"]), ymax = pull(dataset_summary[1,"mean"])-pull(dataset_summary[1,"ci"]),
alpha = .3,fill = "grey60") +
geom_segment(aes(x = 0.85, y = pull(dataset_summary[1,"mean"])+pull(dataset_summary[1,"ci"]),
xend = 2.15, yend = pull(dataset_summary[1,"mean"])+pull(dataset_summary[1,"ci"])),
color = "grey56", linetype = "dotted", alpha = 0.7) +
geom_segment(aes(x = 0.85, y = pull(dataset_summary[1,"mean"])-pull(dataset_summary[1,"ci"]),
xend = 2.15, yend = pull(dataset_summary[1,"mean"])-pull(dataset_summary[1,"ci"])),
color = "grey56", linetype = "dotted", alpha = 0.7) +
geom_segment(aes(x = 0.85, y = pull(dataset_summary[1,"mean"]),
xend = 2.15, yend = pull(dataset_summary[1,"mean"])),
color = "grey56", linetype = "dashed", alpha = 0.7) +
# evolution of COVID-19 subgroups
geom_line(aes(group=Classifier, color=Classifier, linetype=Classifier), linewidth = 2, alpha=0.9) +
scale_color_manual(values = complement_atlas_colors) +
scale_linetype_manual(values=c("dashed", "solid")) +
geom_errorbar(aes(x=Timepoint, y=ci, ymax=(mean+ci), ymin=(mean-ci)), alpha=0.6, width=0, size=5, linetype=1, show.legend = F) +
geom_segment(aes(x=Timepoint-0.08,y=(mean+ci),xend=Timepoint+0.08,yend=(mean+ci), color=Classifier, alpha=0.4), size=2, show.legend = F) +
geom_segment(aes(x=Timepoint-0.08,y=(mean-ci),xend=Timepoint+0.08,yend=(mean-ci), color=Classifier, alpha=0.4), size=2, show.legend = F) +
geom_point(aes(color=Classifier, shape=Classifier), size=5, alpha=0.9) +
geom_point(aes(pch=Classifier),color="white", size=1.5, alpha=0.9) +
scale_shape_manual(values=c(16, 18)) +
# lay-out
scale_x_continuous(breaks=c(0,1,2,3), labels=c("", "day 1","day 6", "")) +
coord_cartesian(ylim = c((min(dataset_summary$mean)-max(dataset_summary$ci)) * 0.9,(max(dataset_summary$mean)+max(dataset_summary$ci)) * 1.1)) +
ggtitle(paste(variable, "over time")) +
labs(caption = "gray area represents 95% confidence interval\nof healthy controls") +
theme_hc() +
theme(legend.position="bottom",
legend.key.width = unit(2.25, "cm"),
plot.caption = element_text(size = 11, hjust = 0.5, face = "italic", color = "grey56"),
plot.title = element_text(size=18, hjust=0.5),
axis.text = element_text(size = 16),
axis.title.x = element_blank(),
axis.title.y = element_blank(),
legend.text = element_text(size = 14),
axis.ticks.y = element_blank(),
legend.title = element_blank())
}
# violinplot
violinplot = function(dataset, variable, comparison, timepoint) {
dataset_subset = dataset %>%
filter(Exclude_aIL6_timepoint_2 == "no") %>% # day 6 samples of anti-IL-6 treated patients are excluded
filter(Day_chr == timepoint | Healthy == "yes") %>%
select(Classifier = comparison, Test = variable) %>%
filter(!Classifier == "")
dataset_subset %>%
ggplot(aes(x = Classifier, y = Test, fill = Classifier)) +
geom_violin(alpha = 0.6, draw_quantiles = 0.5, trim = T, colour = "grey40", size = 1) +
geom_point(aes(color = Classifier), alpha = 0.6, position = position_jitterdodge(jitter.width = 0.8), size = 3) +
scale_fill_manual(values = complement_atlas_colors) +
scale_color_manual(values = complement_atlas_colors) +
theme_hc() +
ggtitle(paste(variable, "\nat", str_sub(timepoint, 1, -2))) +
theme(
plot.title = element_text(size = 18, hjust = 0.5),
axis.text = element_text(size = 16),
legend.position = "null",
axis.title.x = element_blank(),
axis.title.y = element_blank(),
axis.ticks.y = element_blank())
}
# evolutionplot for effect of anti-IL drugs
evolutionplot_anti_IL = function(dataset, variable, comparison) {
dataset_summary = dataset %>%
filter(Exclude_anti_IL1_IL6_comparison != "yes") %>%
select(Classifier = comparison, variable, Timepoint) %>%
filter(!Classifier == "") %>%
filter(Timepoint == 1 | Timepoint == 2) %>%
group_by(Classifier, Timepoint) %>%
get_summary_stats(variable, type = "mean_ci")
ggplot(dataset_summary[2:5,], aes(x=Timepoint, y=mean, group=Classifier, color=Classifier)) +
# grey area representing 95% CI of controls - requires factorization
annotate("rect", xmin = 0.85, xmax = 2.15,
ymin = pull(dataset_summary[1,"mean"])+pull(dataset_summary[1,"ci"]), ymax = pull(dataset_summary[1,"mean"])-pull(dataset_summary[1,"ci"]),
alpha = .3,fill = "grey60") +
geom_segment(aes(x = 0.85, y = pull(dataset_summary[1,"mean"])+pull(dataset_summary[1,"ci"]),
xend = 2.15, yend = pull(dataset_summary[1,"mean"])+pull(dataset_summary[1,"ci"])),
color = "grey56", linetype = "dotted", alpha = 0.7) +
geom_segment(aes(x = 0.85, y = pull(dataset_summary[1,"mean"])-pull(dataset_summary[1,"ci"]),
xend = 2.15, yend = pull(dataset_summary[1,"mean"])-pull(dataset_summary[1,"ci"])),
color = "grey56", linetype = "dotted", alpha = 0.7) +
geom_segment(aes(x = 0.85, y = pull(dataset_summary[1,"mean"]),
xend = 2.15, yend = pull(dataset_summary[1,"mean"])),
color = "grey56", linetype = "dashed", alpha = 0.7) +
# evolution of COVID-19 subgroups
geom_line(aes(group=Classifier, color=Classifier, linetype=Classifier), linewidth = 2, alpha=0.9) +
scale_color_manual(values = complement_atlas_colors) +
scale_linetype_manual(values=c("dashed", "solid")) +
geom_errorbar(aes(x=Timepoint, y=ci, ymax=(mean+ci), ymin=(mean-ci)), alpha=0.6, width=0, size=5, linetype=1, show.legend = F) +
geom_segment(aes(x=Timepoint-0.08,y=(mean+ci),xend=Timepoint+0.08,yend=(mean+ci), color=Classifier, alpha=0.4), size=2, show.legend = F) +
geom_segment(aes(x=Timepoint-0.08,y=(mean-ci),xend=Timepoint+0.08,yend=(mean-ci), color=Classifier, alpha=0.4), size=2, show.legend = F) +
geom_point(aes(color=Classifier, shape=Classifier), size=5, alpha=0.9) +
geom_point(aes(pch=Classifier),color="white", size=1.5, alpha=0.9) +
scale_shape_manual(values=c(16, 18)) +
# lay-out
scale_x_continuous(breaks=c(0,1,2,3), labels=c("", "day 1","day 6", "")) +
coord_cartesian(ylim = c((min(dataset_summary$mean)-max(dataset_summary$ci)) * 0.9,(max(dataset_summary$mean)+max(dataset_summary$ci)) * 1.1)) +
ggtitle(paste(variable, "over time")) +
labs(caption = "gray area represents 95% confidence interval\nof healthy controls") +
theme_hc() +
theme(legend.position="bottom",
legend.key.width = unit(2.25, "cm"),
plot.caption = element_text(size = 11, hjust = 0.5, face = "italic", color = "grey56"),
plot.title = element_text(size=18, hjust=0.5),
axis.text = element_text(size = 16),
axis.title.x = element_blank(),
axis.title.y = element_blank(),
legend.text = element_text(size = 14),
axis.ticks.y = element_blank(),
legend.title = element_blank())
}