-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathplmodel.py
380 lines (315 loc) · 16 KB
/
plmodel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
'''
Developted by : Mohammad Khalooei ([email protected])
In this file, you can follow the main pytorch lightning module which covers all the training procedures based on pytorch lightning library.
You can see that `PLModel` class covers all functions as we need.
## Light tips in Pytorch lightning :
# 1- model
# 2- optimizer
# 3- data
# 4- training loop "the magic"
# 5- validation loop "the validation magic"
'''
from typing import Any, List, Optional, Union
# from lightning_fabric.utilities.types import Steppable
# from pytorch_lightning.utilities.types import EPOCH_OUTPUT, STEP_OUTPUT
import time
import pathlib
import logging
import os
import time
import numpy as np
from matplotlib import pyplot as plt
import torch
import torchvision
from torch import Tensor, optim, nn
from torchvision import datasets, transforms
from torch.utils.data import random_split, DataLoader
import pytorch_lightning as pl
from pytorch_lightning.callbacks import Callback, ModelCheckpoint, LearningRateMonitor
from pytorch_lightning.loggers import CSVLogger, TensorBoardLogger
from pytorch_lightning.core.saving import save_hparams_to_yaml
from lightning.pytorch.loggers.logger import Logger, rank_zero_experiment
from lightning.pytorch.utilities import rank_zero_only
from torch.optim.lr_scheduler import OneCycleLR
from pl_bolts.datamodules import CIFAR10DataModule
from pl_bolts.transforms.dataset_normalizations import cifar10_normalization
import hydra
from omegaconf import DictConfig, OmegaConf
import torchmetrics
from torchmetrics import ConfusionMatrix
from mlxtend.plotting import plot_confusion_matrix
from autoattack import AutoAttack
from torchattacks import PGD, FGSM, FFGSM, APGD, TPGD, CW,MIFGSM,DeepFool
from architectures.MKToyNet import MKToyNet
from architectures.WideResNet import WideResNet16
from architectures.ResNet import ResNet18,ResNet50,ResNet18_benchmark
from architectures.LeNet import LeNet
from utils import *
from lightning.pytorch.accelerators import find_usable_cuda_devices
from torch.optim.swa_utils import AveragedModel, update_bn
class PLModel(pl.LightningModule):
def __init__(self, cfg=None):
super().__init__()
self.cfg = cfg
if self.cfg.global_params.architecture == "MKToyNet":
self.model = MKToyNet(input_size=28)
elif self.cfg.global_params.architecture == "LeNet":
self.model = LeNet()
elif self.cfg.global_params.architecture == "WideResNet":
self.model = WideResNet16()
elif self.cfg.global_params.architecture == "ResNet":
#self.model = ResNet18()
self.model = ResNet18_benchmark()
self.loss = self.model.loss
self.metric_acc = torchmetrics.Accuracy(task='multiclass', num_classes=10) #accuracy(preds, target)
self.validation_step_outputs = {}
self.validation_step_outputs['clean_val_loss']=[]
self.validation_step_outputs['clean_val_acc']=[]
# weight average idea
self.swa_model = AveragedModel(self)
# Important: This property activates manual optimization.
# self.automatic_optimization = False
# save settings and hyperparameters to the log directory
# but skip the model parameters
self.save_hyperparameters()
# self.save_hyperparameters(ignore=['model'])
def set_cfg(self, cfg):
self.cfg=cfg
def forward(self, x):
logits = self.model(x)
return logits
def configure_optimizers(self):
# optimizer if we not mentioned here, we must pass it in the Trainer
# optimizer = optim.SGD(self.parameters(),lr=1e-2)
optimizer = torch.optim.SGD(
self.parameters(),
lr=self.cfg.training_params.lr,
momentum=0.9,
weight_decay=5e-4,
)
steps_per_epoch = len(self.train_idx) #// self.cfg.training_params.batch_size
scheduler_dict = {
"scheduler": OneCycleLR(
optimizer,
0.1,
epochs=self.trainer.max_epochs,
steps_per_epoch=steps_per_epoch,
),
"interval": "step",
}
return {"optimizer": optimizer, "lr_scheduler": scheduler_dict}
@torch.enable_grad()
def prepare_adversarial_data(self, batch, attack):
x,y = batch
# with torch.inference_mode():
x_adv = attack(x,y)
return (x, x_adv, y)
def _adversarial_at_training_step(self,batch,attack):
x, x_adv, y = self.prepare_adversarial_data(batch, attack)
# 1- forward
logits = self(x_adv)
# 2- loss
J = self.loss(logits, y)
return J, y, torch.argmax(logits, dim=1)
# @torch.enable_grad()
def _shared_step(self, batch):
x,y = batch
# 1- forward
logits = self(x)
# 2- loss
J = self.loss(logits, y) # ce loss
return J, y, torch.argmax(logits, dim=1)
# the core function :) of training
def training_step(self, batch, batch_step):
# get batch + feed to model and calculate loss
# batch = on_batch_start(batch) :)
# opt = self.optimizers()
# opt.zero_grad()
if self.cfg.training_params.type == 'normal':
loss, true_labels, predicted_labels = self._shared_step(batch)
elif self.cfg.training_params.type == 'AT':
if self.cfg.adversarial_training_params.name == 'PGD':
atk = PGD(self, eps=self.cfg.adversarial_training_params.eps, steps=10, random_start=True)
elif self.cfg.adversarial_training_params.name == 'FGSM':
atk = FGSM(self, eps=self.cfg.adversarial_training_params.eps)
elif self.cfg.adversarial_training_params.name == 'Fast':
atk = FFGSM(self, eps=self.cfg.adversarial_training_params.eps)
elif self.cfg.adversarial_training_params.name == 'TPGD':
atk = FFGSM(self, eps=self.cfg.adversarial_training_params.eps)
elif self.cfg.adversarial_training_params.name == 'MIFGSM':
atk = MIFGSM(self, eps=self.cfg.adversarial_training_params.eps)
elif self.cfg.adversarial_training_params.name == 'CW':
atk = CW(self)
else:
atk = PGD(self, eps=self.cfg.adversarial_training_params.eps, steps=10, random_start=True)
loss, true_labels, predicted_labels = self._adversarial_at_training_step(batch, atk)
# self.manual_backward(loss)
# opt.step()
acc = self.metric_acc(predicted_labels,true_labels)
self.log("clean_train_acc", acc, on_step=True, on_epoch=True, prog_bar=True, logger=True)
self.log("clean_train_loss", loss, on_step=True, on_epoch=True, prog_bar=True, logger=True)
return {'loss': loss, 'clean_train_acc':acc} # for log
# on_after_backward function :)
# def backward(self, trainer, loss, optimizer):
# loss.backward()
def training_epoch_end(self, training_step_outputs):
self.swa_model.update_parameters(self.model)
def on_train_end(self):
update_bn(self.trainer.train_dataloader, self.swa_model, device=self.device)
def validation_step(self, batch, batch_idx):
# results = self.normal_training_params(batch, batch_idx)
results = {}
loss, true_labels, predicted_labels = self._shared_step(batch)
acc = self.metric_acc(predicted_labels, true_labels)
self.validation_step_outputs['clean_val_loss'].append(loss) # for hook
self.validation_step_outputs['clean_val_acc'].append(acc) # for hook
results['clean_val_acc']=acc
results['clean_val_loss']=loss
# del results['train_acc']
return results
def on_validation_epoch_end(self): #validation_epoch_end(self, val_step_outputs):
# [results batch1, results batch 2, ..]
val_loss = torch.stack(self.validation_step_outputs['clean_val_loss'])
val_acc = torch.stack(self.validation_step_outputs['clean_val_acc'])
# do something with all preds
...
avg_val_loss = torch.Tensor([x for x in val_loss]).mean()
avg_val_acc = torch.Tensor([x for x in val_acc]).mean()
self.validation_step_outputs.clear() # free memory
self.validation_step_outputs = {}
self.validation_step_outputs['clean_val_loss']=[]
self.validation_step_outputs['clean_val_acc']=[]
self.log("clean_val_acc", avg_val_acc, prog_bar=True)
self.log("clean_val_loss", avg_val_loss, prog_bar=True)
return {'clean_val_loss': avg_val_loss} #early stopping for val_loss just field.
# @torch.enable_grad
# def on_test_batch_end(trainer, pl_module, outputs, batch, batch_idx, dataloader_idx=0):
@torch.inference_mode(False)
def test_step(self, batch, batch_idx): # not executed during the training
x,y = batch
# 1- forward
logits = self(x)
true_labels, predicted_labels = y,torch.argmax(logits, dim=1)
test_acc = self.metric_acc(predicted_labels, true_labels)
self.log('test_clean_accuracy',test_acc)
# attack_name = "CW"
# atk = CW(self)
# x, x_adv, y = self.prepare_adversarial_data(batch, atk)
# logits = self(x_adv)
# true_labels, predicted_labels = y,torch.argmax(logits, dim=1)
# test_acc = self.metric_acc(predicted_labels, true_labels)
# self.log(f'test_adv-{attack_name}_accuracy',test_acc)
# attack_name = "DeepFool"
# atk = DeepFool(self)
# x, x_adv, y = self.prepare_adversarial_data(batch, atk)
# logits = self(x_adv)
# true_labels, predicted_labels = y,torch.argmax(logits, dim=1)
# test_acc = self.metric_acc(predicted_labels, true_labels)
# self.log(f'test_adv-{attack_name}_accuracy',test_acc)
attack_name = "PGD"
for eps in [0.01,0.03, 0.1,0.2,0.3,0.5]:
# atk = PGD(self, eps=self.cfg.adversarial_training_params.eps, steps=10, random_start=True)
atk = PGD(self, eps=eps, steps=50, random_start=True)
x, x_adv, y = self.prepare_adversarial_data(batch, atk)
logits = self(x_adv)
true_labels, predicted_labels = y,torch.argmax(logits, dim=1)
test_acc = self.metric_acc(predicted_labels, true_labels)
self.log(f'test_adv-{attack_name}-eps{eps}_accuracy',test_acc)
# if self.current_epoch >150:
attack_name = "FGSM"
for eps in [0.01,0.03, 0.1,0.2,0.3,0.5]:
# atk = PGD(self, eps=self.cfg.adversarial_training_params.eps, steps=10, random_start=True)
atk = FGSM(self, eps=eps)
x, x_adv, y = self.prepare_adversarial_data(batch, atk)
logits = self(x_adv)
true_labels, predicted_labels = y,torch.argmax(logits, dim=1)
test_acc = self.metric_acc(predicted_labels, true_labels)
self.log(f'test_adv-{attack_name}-eps{eps}_accuracy',test_acc)
# # if self.current_epoch >150:
# attack_name = "MIFGSM"
# for eps in [0.01,0.03, 0.1,0.2,0.3,0.5]:
# # atk = PGD(self, eps=self.cfg.adversarial_training_params.eps, steps=10, random_start=True)
# atk = MIFGSM(self, eps=eps, alpha=0.0392156862745098)
# x, x_adv, y = self.prepare_adversarial_data(batch, atk)
# logits = self(x_adv)
# true_labels, predicted_labels = y,torch.argmax(logits, dim=1)
# test_acc = self.metric_acc(predicted_labels, true_labels)
# self.log(f'test_adv-{attack_name}-eps{eps}_accuracy',test_acc)
# attack_name = "APGD"
# for eps in [0.03, 0.1,0.2,0.3,0.5]:
# # atk = PGD(self, eps=self.cfg.adversarial_training_params.eps, steps=10, random_start=True)
# # atk = APGD(self, eps=eps)
# adversary = AutoAttack(self, norm='Linf', eps=eps, version='standard')
# x_adv = adversary.run_standard_evaluation(x, y, bs=len(x))
# # x, x_adv, y = self.prepare_adversarial_data(batch, atk)
# logits = self(x_adv)
# true_labels, predicted_labels = y,torch.argmax(logits, dim=1)
# test_acc = self.metric_acc(predicted_labels, true_labels)
# self.log(f'test_adv-{attack_name}-eps{eps}_accuracy',test_acc)
def adversarial_test_step(self, batch, batch_idx): # not executed during the training
loss, true_labels, predicted_labels = self._shared_step(batch)
test_acc = self.metric_acc(predicted_labels, true_labels)
self.log('test_accuracy',test_acc)
# Data loader -> if we not mentioned here, we must pass it in the Trainer
def prepare_data(self):
# one time is being run (lazy loading) #it is useful for multi-GPU
if self.cfg.global_params.dataset == 'MNIST':
train_transforms = torchvision.transforms.Compose(
[
torchvision.transforms.ToTensor(),
]
)
test_transforms = torchvision.transforms.Compose(
[
torchvision.transforms.ToTensor(),
]
)
train_data = datasets.MNIST('data', train=True, download=True, transform=train_transforms)
test_data = datasets.MNIST('data', train=False, download=True, transform=test_transforms)
return train_data, test_data
elif self.cfg.global_params.dataset == 'CIFAR10':
train_transforms = torchvision.transforms.Compose(
[
torchvision.transforms.RandomCrop(32, padding=4),
torchvision.transforms.RandomHorizontalFlip(),
torchvision.transforms.ToTensor(),
# cifar10_normalization(),
]
)
test_transforms = torchvision.transforms.Compose(
[
torchvision.transforms.ToTensor(),
# cifar10_normalization(),
]
)
train_data = datasets.CIFAR10('data', train=True, download=True, transform=train_transforms)
test_data = datasets.CIFAR10('data', train=False, download=True, transform=test_transforms)
return train_data, test_data
else:
print('Dataset Error')
exit(-1)
def setup(self, stage):
# any transformation here ....
if self.cfg.global_params.dataset == 'MNIST':
# train_data = datasets.MNIST('data', train=True, download=False, transform=transforms.ToTensor())
train_data, test_data = self.prepare_data()
self.train_idx, self.val_idx = random_split(train_data, [55000,5000])
self.test_data = test_data
# self.test_data = datasets.MNIST('data', train=False, download=False, transform=transforms.ToTensor())
# self.train_idx, self.val_idx = random_split(test_data, [55000,5000])
elif self.cfg.global_params.dataset == 'CIFAR10':
#train_data = datasets.CIFAR10('data', train=True, download=False, transform=transforms.ToTensor())
train_data, test_data = self.prepare_data()
self.train_idx, self.val_idx = random_split(train_data, [len(train_data)-5000,5000])
self.test_data = test_data
#self.test_data = datasets.CIFAR10('data', train=False, download=False, transform=transforms.ToTensor())
def train_dataloader(self):
# train / val split
self.train_loader = DataLoader(self.train_idx, batch_size=self.cfg.training_params.batch_size,num_workers=self.cfg.training_params.dataloader_workers,pin_memory=True)
return self.train_loader
def val_dataloader(self):
self.val_loader = DataLoader(self.val_idx, batch_size=self.cfg.training_params.batch_size,num_workers=self.cfg.training_params.dataloader_workers,pin_memory=True)
return self.val_loader
def test_dataloader(self):
self.test_loader = DataLoader(self.test_data , batch_size=self.cfg.training_params.batch_size,num_workers=self.cfg.training_params.dataloader_workers,pin_memory=True)
return self.test_loader