-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathmain.py
238 lines (188 loc) · 8.71 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
__author__ = 'KhiemDH'
__github__ = 'https://github.com/khiemdoan'
__email__ = '[email protected]'
import logging
from datetime import date, datetime, time, timedelta
from pathlib import Path
from time import sleep
import numpy as np
import pandas as pd
import seaborn as sns
from jinja2 import Environment, FileSystemLoader, select_autoescape
from matplotlib import pyplot as plt
from pytz import timezone
from src.lottery import Lottery
def colors_from_values(values, palette_name):
normalized = (values - min(values)) / (max(values) - min(values))
indices = np.round(normalized * (len(values) - 1)).astype(np.int32)
palette = sns.color_palette(palette_name, len(values))
return np.array(palette).take(indices, axis=0)
def last_appearing(data: pd.DataFrame, type: str):
numbers = data[['special']]
numbers.reset_index(inplace=True)
predict_index = numbers['index'].max() + 1
numbers = numbers.melt(id_vars='index', var_name='prize', value_name='value')
numbers['value'] = numbers['value'] % 100
last_appearing = numbers.groupby(['value'])['index'].max()
last_appearing = last_appearing.to_frame()
last_appearing.reset_index()
last_appearing['delta'] = predict_index - last_appearing['index']
last_appearing.drop('index', axis=1, inplace=True)
heatmap_data = last_appearing.copy()
heatmap_data['tens'] = heatmap_data.index // 10
heatmap_data['ones'] = heatmap_data.index % 10
heatmap_data = heatmap_data[['tens', 'ones', 'delta']]
heatmap_data = heatmap_data.pivot(index='tens', columns='ones', values='delta').fillna(0)
heatmap_data = heatmap_data.astype(int)
bar_data = last_appearing.sort_values('delta', ascending=False)
bar_data = bar_data.iloc[:10, :]
bar_data.reset_index(inplace=True)
bar_data = bar_data.rename(columns={'index': 'value'})
bar_data['value'] = bar_data['value'].apply(lambda r: f'{r:02d}')
fig, ax = plt.subplots()
sns.heatmap(heatmap_data, annot=True, fmt='d', cmap='RdYlGn', ax=ax)
ax.set_title('Delta')
fig.savefig('images/special_delta.jpg')
fig, ax = plt.subplots()
palette = reversed(colors_from_values(bar_data['delta'], 'summer'))
sns.barplot(bar_data, x='value', y='delta', hue='value', palette=palette, ax=ax)
for bar in ax.containers:
ax.bar_label(bar, fmt='%d')
ax.set_title('Top 10')
fig.savefig('images/special_delta_top_10.jpg')
def last_appearing_loto(data):
numbers = data.drop('date', axis=1)
numbers.reset_index(inplace=True)
predict_index = numbers['index'].max() + 1
numbers = numbers.melt(id_vars='index', var_name='prize', value_name='value')
numbers['value'] = numbers['value'] % 100
last_appearing = numbers.groupby(['value'])['index'].max()
last_appearing = last_appearing.to_frame()
last_appearing.reset_index()
last_appearing['delta'] = predict_index - last_appearing['index']
last_appearing.drop('index', axis=1, inplace=True)
heatmap_data = last_appearing.copy()
heatmap_data['tens'] = heatmap_data.index // 10
heatmap_data['ones'] = heatmap_data.index % 10
heatmap_data = heatmap_data[['tens', 'ones', 'delta']]
heatmap_data = heatmap_data.pivot(index='tens', columns='ones', values='delta').fillna(0)
heatmap_data = heatmap_data.astype(int)
bar_data = last_appearing.sort_values('delta', ascending=False)
bar_data = bar_data.iloc[:10, :]
bar_data.reset_index(inplace=True)
bar_data = bar_data.rename(columns={'index': 'value'})
bar_data['value'] = bar_data['value'].apply(lambda r: f'{r:02d}')
fig, ax = plt.subplots()
sns.heatmap(heatmap_data, annot=True, fmt='d', cmap='RdYlGn', ax=ax)
ax.set_title('Delta')
fig.savefig('images/delta.jpg')
fig, ax = plt.subplots()
palette = reversed(colors_from_values(bar_data['delta'], 'summer'))
sns.barplot(bar_data, x='value', y='delta', hue='value', palette=palette, ax=ax)
for bar in ax.containers:
ax.bar_label(bar, fmt='%d')
ax.set_title('Top 10')
fig.savefig('images/delta_top_10.jpg')
if __name__ == '__main__':
pd.options.io.parquet.engine = 'pyarrow'
pd.options.mode.string_storage = 'pyarrow'
lottery = Lottery()
lottery.load()
# Download new data
begin_date = lottery.get_last_date()
tz = timezone('Asia/Ho_Chi_Minh')
now = datetime.now(tz)
last_date = now.date()
if now.time() < time(18, 35):
last_date -= timedelta(days=1)
delta = (last_date - begin_date).days + 1
for i in range(1, delta):
selected_date = begin_date + timedelta(days=i)
print(f'Fetching: {selected_date}')
lottery.fetch(selected_date)
lottery.generate_dataframes()
lottery.dump()
# Analysis
results = lottery.get_raw_data()
sparse_results = lottery.get_sparse_data()
last_date = results['date'].max()
start_date = pd.Timestamp(year=last_date.year - 2, month=last_date.month, day=last_date.day)
results_2_year = results[(start_date < results['date']) & (results['date'] <= last_date)]
results_2_year.reset_index(drop=True, inplace=True)
start_date = pd.Timestamp(year=last_date.year - 1, month=last_date.month, day=last_date.day)
small_results = results[(start_date < results['date']) & (results['date'] <= last_date)]
small_results.reset_index(drop=True, inplace=True)
# Last appearing Special price
last_appearing(results_2_year, 'tail_special')
recent_results = small_results.iloc[-1].values[1:]
recent_results = recent_results % 100
loto_result = []
for i in range(10):
category = sorted([d for d in recent_results if d // 10 == i])
category = [f'{d%10:1d}' for d in category]
category = ', '.join(category) if len(category) > 0 else '-'
loto_result.append(category)
last_date = sparse_results['date'].max()
start_date = pd.Timestamp(year=last_date.year - 1, month=last_date.month, day=last_date.day)
sparse_results_1_year = sparse_results[
(start_date < sparse_results['date']) & (sparse_results['date'] <= last_date)
]
sparse_results_1_year.reset_index(drop=True, inplace=True)
sparse_results_1_year = sparse_results_1_year.drop(columns=['date'])
counts = sparse_results_1_year.sum(axis=0)
max_count = counts.max().round(2)
min_count = counts.min().round(2)
mean = counts.mean().round(2)
std = counts.std().round(2)
env = Environment(
loader=FileSystemLoader('templates'),
autoescape=select_autoescape(),
)
template = env.get_template('README.j2')
content = template.render(
loto_result=loto_result, max_count=max_count, min_count=min_count, mean=mean, std=std, **small_results.iloc[-1]
)
with open('README.md', 'w', encoding='utf-8') as outfile:
outfile.write(content)
counts = counts.reset_index()
counts.columns = ['value', 'freq']
counts = counts.astype({'value': int})
counts.sort_values('freq', ascending=False, inplace=True)
# Detail plot
heatmap_data = counts.copy()
heatmap_data['tens'] = heatmap_data['value'] // 10
heatmap_data['ones'] = heatmap_data['value'] % 10
heatmap_data = heatmap_data[['tens', 'ones', 'freq']]
heatmap_data = heatmap_data.pivot(index='tens', columns='ones', values='freq').fillna(0)
heatmap_data = heatmap_data.astype(int)
fig, ax = plt.subplots()
sns.heatmap(heatmap_data, annot=True, fmt='d', cmap='RdYlGn', ax=ax)
ax.set_title('Detail')
fig.savefig('images/heatmap.jpg')
# Top 10 plot
bar_data = counts[:10].copy()
bar_data['value'] = bar_data['value'].apply(lambda r: f'{r:02d}')
fig, ax = plt.subplots()
palette = reversed(colors_from_values(bar_data['freq'], 'summer'))
sns.barplot(bar_data, x='value', y='freq', hue='value', palette=palette, ax=ax)
for bar in ax.containers:
ax.bar_label(bar, fmt='%d')
ax.set_title('Top 10')
fig.savefig('images/top-10.jpg')
# Distribution
data = counts[['freq']].copy()
bins = data.max().iloc[0] - data.min().iloc[0] + 1
fig, ax = plt.subplots()
sns.histplot(data, kde=True, bins=bins, fill=False, ax=ax)
kdeline = ax.lines[0]
xs = kdeline.get_xdata()
ys = kdeline.get_ydata()
ax.vlines(mean, 0, np.interp(mean, xs, ys), color='red', linestyles='solid')
ax.vlines(mean - std, 0, np.interp(mean - std, xs, ys), color='red', linestyles='dashed')
ax.vlines(mean + std, 0, np.interp(mean + std, xs, ys), color='red', linestyles='dashed')
ax.vlines(mean - 2 * std, 0, np.interp(mean - 2 * std, xs, ys), color='red', linestyles='dotted')
ax.vlines(mean + 2 * std, 0, np.interp(mean + 2 * std, xs, ys), color='red', linestyles='dotted')
ax.set_title('Distribution')
fig.savefig('images/distribution.jpg')
# Last appearing Loto
last_appearing_loto(small_results)