-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathedp_simple.py
262 lines (226 loc) · 11.8 KB
/
edp_simple.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
import logging
import time
import os
import graph_tool.all as gt
from easydict import EasyDict as edict
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from evaluation.stats import eval_torch_batch
from model.langevin_mc import LangevinMCSampler
from utils.arg_helper import edict2dict, parse_arguments, get_config, process_config, set_seed_and_logger, load_data
from utils.graph_utils import gen_list_of_data
from utils.loading_utils import get_mc_sampler, get_score_model, eval_sample_batch
from utils.visual_utils import plot_graphs_adj
from sample_edp_simple import sample_main_edp, sample_testing_edp
import wandb
# Gets data as list of tensors, each list corresponds to one sigmalevel, then we have tensordim matrices x i x j
def loss_func_bce(score_list, grad_log_q_noise_list, sigma_list):
loss = 0.0
for score, grad_log_q_noise, sigma in zip(score_list, grad_log_q_noise_list, sigma_list):
BCE = torch.nn.BCEWithLogitsLoss()
cur_loss = BCE(score, grad_log_q_noise)
# Weight by 1-sigma, if sigma high then we have high noise so low weight
loss = loss + cur_loss * (1-2*sigma+1/len(sigma_list))
return loss
def fit(model, optimizer, mcmc_sampler, train_dl, max_node_number, max_epoch=20, config=None,
save_interval=50,
sample_interval=1,
sigma_list=None,
sample_from_sigma_delta=0.0,
test_dl=None
):
# Define the nr of noiselevels to use during training
num_levels = [len(sigma_list)]
# These parameters are set in order to do model selection based on the mmd and loss
best_score = np.inf
best_loss = np.inf
# Create a subdir for storing the selected models
os.system(f"mkdir {config.model_save_dir}/best")
os.system(f"mkdir {config.model_save_dir}/bestloss")
os.system(f"mkdir {config.model_save_dir}/main")
logging.info(f"{sigma_list}, {sample_from_sigma_delta}")
# This is for storing the previous scores if we do not evaluate every epoch
lastmmd = {}
for noisenum in config.num_levels:
lastmmd[noisenum] = {"degree": 0, "cluster": 0, "orbit": 0.0}
# Set optimizer to zero
optimizer.zero_grad()
# Define schedular as ExpLR with th parameters given in config
scheduler = torch.optim.lr_scheduler.ExponentialLR(
optimizer, gamma=config.train.lr_dacey)
for epoch in range(max_epoch): # range(max_epoch):
train_losses = []
train_loss_items = []
test_losses = []
test_loss_items = []
t_start = time.time()
model.train()
for train_adj_b, train_x_b in train_dl:
# train_adj_b is of size [batch_size, N, N]
# train_x_b is of size [batch_size, N, F_i]
train_adj_b = train_adj_b.to(config.dev)
train_x_b = train_x_b.to(config.dev)
train_node_flag_b = train_adj_b.sum(
-1).gt(1e-5).to(dtype=torch.float32)
if isinstance(sigma_list, float):
sigma_list = [sigma_list]
train_x_b, train_noise_adj_b, \
train_node_flag_b, grad_log_q_noise_list = \
gen_list_of_data(train_x_b, train_adj_b,
train_node_flag_b, sigma_list, config)
# train_noise_adj_b is of size [len(sigma_list) * batch_size, N, N]
# train_x_b is of size [len(sigma_list) * batch_size, N, F_i]
optimizer.zero_grad()
score = model(x=train_x_b,
adjs=train_noise_adj_b,
node_flags=train_node_flag_b)
loss = loss_func_bce(score.chunk(
len(sigma_list), dim=0), grad_log_q_noise_list, sigma_list)
loss.backward()
optimizer.step()
train_losses.append(loss.detach().cpu().item())
scheduler.step(epoch)
# Here testloss might get added later
model.eval()
mean_train_loss = np.mean(train_losses)
mean_train_loss_item = np.mean(train_loss_items, axis=0)
mean_train_loss_item_str = np.array2string(mean_train_loss_item, precision=2, separator="\t", prefix="\t")
logging.info(f'epoch: {epoch:03d}| time: {time.time() - t_start:.1f}s| '
f'train loss: {mean_train_loss:+.3e} | ')
logging.info(f'epoch: {epoch:03d}| '
f'train loss i: {mean_train_loss_item_str} ')
# Save model
if epoch % save_interval == save_interval - 1:
to_save = {
'model': model.state_dict(),
'sigma_list': sigma_list,
'config': edict2dict(config),
'epoch': epoch,
'train_loss': mean_train_loss,
'test_loss': 0,
'train_loss_item': mean_train_loss_item,
'test_loss_item': 0,
}
torch.save(to_save, os.path.join(config.model_save_dir,
f"{config.dataset.name}.pth"))
# Save model with best loss on train dataset
if mean_train_loss < best_loss:
best_score = mean_train_loss
to_save = {
'model': model.state_dict(),
'sigma_list': sigma_list,
'config': edict2dict(config),
'epoch': epoch,
'train_loss': best_score,
'test_loss': 0,
'train_loss_item': mean_train_loss_item,
'test_loss_item': 0,
}
torch.save(to_save, os.path.join(config.model_save_dir,
f"bestloss/{config.dataset.name}.pth"))
# If conditions are met then evaluate the MMD score compared to the train set (in order to do model selection)
if epoch % sample_interval == sample_interval - 1 and config.eval_from < epoch:
with torch.no_grad():
wandb_dict = {}
for num_noiselevel in config.num_levels:
results = sample_testing_edp(config, f"{config.model_save_dir}", epoch, num_noiselevel, train_dl)
wandb_dict.update({f"degree_mmd_{num_noiselevel}": results["degree"], f"cluster_mmd_{num_noiselevel}": results["cluster"],
f"orbit_mmd_{num_noiselevel}": results["orbit"], "trainloss": mean_train_loss, "testloss": 0})
lastmmd[num_noiselevel] = results
#wandb.log(wandb_dict)
logging.info(wandb_dict)
if sum([results[key] if "likelyhood" not in key else 1-results[key] for key in results.keys()]) < best_score:
best_score = sum([results[key] if "likelyhood" not in key else 1-results[key] for key in results.keys()])
to_save = {
'model': model.state_dict(),
'sigma_list': sigma_list,
'config': edict2dict(config),
'epoch': epoch,
'train_loss': best_score,
'test_loss': 0,
'train_loss_item': mean_train_loss_item,
'test_loss_item': 0,
}
torch.save(to_save, os.path.join(config.model_save_dir,
f"best/{config.dataset.name}.pth"))
else:
wandb_dict = {}
for num_noiselevel in config.num_levels:
wandb_dict.update({f"degree_mmd_{num_noiselevel}": lastmmd[num_noiselevel]["degree"], f"cluster_mmd_{num_noiselevel}": lastmmd[num_noiselevel]["cluster"], f"orbit_mmd_{num_noiselevel}": lastmmd[
num_noiselevel]["orbit"], "trainloss": mean_train_loss, "testloss": 0})
#wandb.log(wandb_dict)
logging.info(wandb_dict)
if epoch % config.finalinterval == config.finalinterval-1 and config.eval_from < epoch:
with torch.no_grad():
# Evaluate the MMD score compared to the test set using the model selected based on th best mmd score
wandb_dict = {}
results = sample_main_edp(
config, f"{config.model_save_dir}/best", epoch, num_noiselevel)
wandb_dict.update({f"degree_mmd_{num_noiselevel}_best": results["degree"], f"cluster_mmd_{num_noiselevel}_best": results[
"cluster"], f"orbit_mmd_{num_noiselevel}_best": results["orbit"], "testloss_best": best_score})
#wandb.log(wandb_dict)
logging.info(f"MMD of Epoch {epoch} with modelselection based on mmd performance: {wandb_dict}")
# Evaluate the MMD score compared to the test set using the model selected based on th best mmd score
results = sample_main_edp(
config, f"{config.model_save_dir}/bestloss", epoch, num_noiselevel)
wandb_dict.update({f"degree_mmd_{num_noiselevel}_bestloss": results["degree"], f"cluster_mmd_{num_noiselevel}_bestloss": results[
"cluster"], f"orbit_mmd_{num_noiselevel}_bestloss": results["orbit"], "testloss_bestloss": best_score})
#wandb.log(wandb_dict)
logging.info(f"MMD of Epoch {epoch} with modelselection based on trainloss: {wandb_dict}")
results = sample_main_edp(
config, f"{config.model_save_dir}", epoch, num_noiselevel)
wandb_dict.update({f"degree_mmd_{num_noiselevel}_main": results["degree"], f"cluster_mmd_{num_noiselevel}_main": results[
"cluster"], f"orbit_mmd_{num_noiselevel}_main": results["orbit"], "testloss": best_score})
#wandb.log(wandb_dict)
logging.info(f"MMD of Epoch {epoch} without modelselection: {wandb_dict}")
def train_main(config, args):
config.train.sigmas = np.linspace(0, 0.5, config.num_levels[0]+1).tolist()
set_seed_and_logger(config, args)
train_dl, test_dl = load_data(config)
# mc_sampler = get_mc_sampler(config)
# Here, the `model` get `num_classes=len(sigma_list)`
model = get_score_model(config)
param_strings = []
max_string_len = 126
for name, param in model.named_parameters():
if param.requires_grad:
line = '.' * max(0, max_string_len - len(name) -
len(str(param.size())))
param_strings.append(f"{name} {line} {param.size()}")
param_string = '\n'.join(param_strings)
logging.info(f"Parameters: \n{param_string}")
total_params = sum(p.numel() for p in model.parameters())
total_trainable_params = sum(p.numel()
for p in model.parameters() if p.requires_grad)
logging.info(
f"Parameters Count: {total_params}, Trainable: {total_trainable_params}")
optimizer = optim.Adam(model.parameters(),
lr=config.train.lr_init,
betas=(0.9, 0.999), eps=1e-8,
weight_decay=config.train.weight_decay)
# Create the sigma_list which is just a list that defines the noiselevels to use
sigma_tens = torch.linspace(0, 1/2, len(config.train.sigmas))
sigma_list = sigma_tens.tolist()
sigma_list.sort()
#wandb.login(key="")
#wandb.init(project="", entity="")
fit(model, optimizer, None, train_dl,
max_node_number=config.dataset.max_node_num,
max_epoch=config.train.max_epoch,
config=config,
save_interval=config.train.save_interval,
sample_interval=config.train.sample_interval,
sigma_list=sigma_list,
sample_from_sigma_delta=0.0,
test_dl=test_dl
)
if __name__ == "__main__":
# torch.autograd.set_detect_anomaly(True)
args = parse_arguments('train_ego_small.yaml')
ori_config_dict = get_config(args)
config_dict = edict(ori_config_dict.copy())
process_config(config_dict)
config_dict.model.name = "edp-gnn"
train_main(config_dict, args)