-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathppgn_simple.py
286 lines (259 loc) · 15.3 KB
/
ppgn_simple.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
import logging
import time
import os
import sys
import graph_tool.all as gt
from easydict import EasyDict as edict
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from evaluation.stats import eval_torch_batch
from model.langevin_mc import LangevinMCSampler
from sample_ppgn_simple import sample_main, sample_testing
from utils.arg_helper import edict2dict, parse_arguments, get_config, process_config, set_seed_and_logger, load_data
from utils.graph_utils import gen_list_of_data_single, generate_mask
from utils.loading_utils import get_mc_sampler, get_score_model, eval_sample_batch
from utils.visual_utils import plot_graphs_adj
from model.ppgn import Powerful
from matplotlib import pyplot as plt
import wandb
def loss_func_bce(score_list, grad_log_q_noise_list, sigma_list, config, mask):
loss = 0.0
BCE = torch.nn.BCEWithLogitsLoss(reduction='none')
loss_matrix = BCE(score_list,grad_log_q_noise_list)
loss_matrix = loss_matrix * (1-2*torch.tensor(sigma_list).unsqueeze(-1).unsqueeze(-2).expand(grad_log_q_noise_list.size(0),grad_log_q_noise_list.size(1),grad_log_q_noise_list.size(2)).to(config.dev)+1.0/len(sigma_list))
# Loss analogue to https://arxiv.org/pdf/2111.12701.pdf
loss_matrix = (loss_matrix+torch.transpose(loss_matrix, -2, -1))/2
loss_matrix = loss_matrix * mask
loss = torch.mean(loss_matrix)
return loss
def fit(model, optimizer, mcmc_sampler, train_dl, max_node_number, max_epoch=20, config=None,
save_interval=50,
sample_interval=1,
sigma_length=None,
sample_from_sigma_delta=0.0,
test_dl=None
):
best_score = np.inf
best_score_loss = np.inf
best_epoch = 0
best_epoch_loss = 0
os.system(f"mkdir {config.model_save_dir}/best")
os.system(f"mkdir {config.model_save_dir}/bestloss")
lastmmd = {}
for noisenum in config.num_levels:
lastmmd[noisenum]={"degree": 0, "cluster": 0, "orbit": 0.0}
resultlist = []
optimizer.zero_grad()
scheduler = torch.optim.lr_scheduler.ExponentialLR(optimizer, gamma=config.train.lr_dacey)
for epoch in range(max_epoch):
train_losses = []
train_loss_items = []
test_losses = []
test_loss_items = []
t_start = time.time()
model.train()
for train_adj_b, train_x_b in train_dl:
# Here sample the noiselevels randomly from 0 to 0.5
sigma_list=list(np.random.uniform(low=0.0, high=0.5, size=train_adj_b.size(0)))
train_adj_b = train_adj_b.to(config.dev)
train_x_b = train_x_b.to(config.dev)
train_node_flag_b = train_adj_b.sum(-1).gt(1e-5).to(dtype=torch.float32)
if isinstance(sigma_list, float):
sigma_list = [sigma_list]
train_x_b, train_noise_adj_b, \
train_node_flag_b, grad_log_q_noise_list = \
gen_list_of_data_single(train_x_b, train_adj_b,
train_node_flag_b, sigma_list, config)
# Now we have tensor of size B x N x N and grad_log_q_noise_list is list of B x Tensor( N x N )
optimizer.zero_grad()
train_noise_adj_b_chunked = train_noise_adj_b.chunk(len(sigma_list), dim=0)
train_adj_b_chunked = train_adj_b.chunk(len(sigma_list), dim=0)
train_node_flag_b = train_node_flag_b.chunk(len(sigma_list), dim=0)
score = []
masks = []
for i, sigma in enumerate(sigma_list):
mask = generate_mask(train_node_flag_b[i])
score_batch = model(A=train_noise_adj_b_chunked[i].unsqueeze(0).to(config.dev), node_features=train_noise_adj_b_chunked[i].to(config.dev), mask=mask.to(config.dev), noiselevel=sigma).to(config.dev)
score.append(score_batch)
masks.append(mask)
score = torch.cat(score, dim=0).squeeze(-1).to(config.dev)
masktens = torch.cat(masks, dim=0).to(config.dev)
loss = loss_func_bce(score, torch.stack(grad_log_q_noise_list), sigma_list, config, masktens)
loss.backward()
optimizer.step()
train_losses.append(loss.detach().cpu().item())
scheduler.step(epoch)
model.eval()
for test_adj_b, test_x_b in test_dl:
test_adj_b = test_adj_b.to(config.dev)
test_x_b = test_x_b.to(config.dev)
test_node_flag_b = test_adj_b.sum(-1).gt(1e-5).to(dtype=torch.float32)
sigma_list = list(np.random.uniform(low=0.0, high=0.5, size=test_adj_b.size(0)))
test_x_b, test_noise_adj_b, test_node_flag_b, grad_log_q_noise_list = \
gen_list_of_data_single(test_x_b, test_adj_b,
test_node_flag_b, sigma_list,config=config)
with torch.no_grad():
test_noise_adj_b_chunked = test_noise_adj_b.chunk(len(sigma_list), dim=0)
test_node_flag_b = test_node_flag_b.chunk(len(sigma_list), dim=0)
score = []
masks = []
for i, sigma in enumerate(sigma_list):
mask = generate_mask(test_node_flag_b[i])
score_batch = model(A=test_noise_adj_b_chunked[i].unsqueeze(0).to(config.dev), node_features=test_noise_adj_b_chunked[i].to(config.dev), mask=mask.to(config.dev), noiselevel=sigma).to(config.dev)
masks.append(mask)
score.append(score_batch)
score = torch.cat(score, dim=0).squeeze(-1).to(config.dev)
masktens = torch.cat(masks, dim=0).to(config.dev)
# Here changed so that loss just gets tensor of size B x N x N
loss = loss_func_bce(score, torch.stack(grad_log_q_noise_list), sigma_list, config, masktens)
test_losses.append(loss.detach().cpu().item())
mean_train_loss = np.mean(train_losses)
mean_test_loss = np.mean(test_losses)
mean_train_loss_item = np.mean(train_loss_items, axis=0)
mean_train_loss_item_str = np.array2string(mean_train_loss_item, precision=2, separator="\t", prefix="\t")
mean_test_loss_item = np.mean(test_loss_items, axis=0)
mean_test_loss_item_str = np.array2string(mean_test_loss_item, precision=2, separator="\t", prefix="\t")
logging.info(f'epoch: {epoch:03d}| time: {time.time() - t_start:.1f}s| '
f'train loss: {mean_train_loss:+.3e} | '
f'test loss: {mean_test_loss:+.3e} | ')
logging.info(f'epoch: {epoch:03d}| '
f'train loss i: {mean_train_loss_item_str} '
f'test loss i: {mean_test_loss_item_str} | ')
# Save current model
if epoch % save_interval == save_interval - 1:
to_save = {
'model': model.state_dict(),
'sigma_list': sigma_list,
'config': edict2dict(config),
'epoch': epoch,
'train_loss': mean_train_loss,
'test_loss': mean_test_loss,
'train_loss_item': mean_train_loss_item,
'test_loss_item': mean_test_loss_item,
'optimizer_state_dict': optimizer.state_dict(),
'scheduler_state_dict': scheduler.state_dict()
}
torch.save(to_save, os.path.join(config.model_save_dir,
f"{config.dataset.name}.pth"))
# Save best model in terms of lowest loss on train set
if mean_train_loss<best_score_loss:
best_epoch_loss = epoch
best_score_loss = mean_train_loss
to_save = {
'model': model.state_dict(),
'sigma_list': sigma_list,
'config': edict2dict(config),
'epoch': epoch,
'train_loss': best_score,
'test_loss': mean_test_loss,
'train_loss_item': mean_train_loss_item,
'test_loss_item': mean_test_loss_item,
'optimizer_state_dict': optimizer.state_dict(),
'scheduler_state_dict': scheduler.state_dict()
}
torch.save(to_save, os.path.join(config.model_save_dir,
f"bestloss/{config.dataset.name}.pth"))
logging.info(f'epoch: {epoch:03d}| time: {time.time() - t_start:.1f}s| '
f'train loss: {mean_train_loss:+.3e} | '
f'test loss: {mean_test_loss:+.3e} | ')
logging.info(f'epoch: {epoch:03d}| '
f'train loss i: {mean_train_loss_item_str} '
f'test loss i: {mean_test_loss_item_str} | ')
# Generate graphs based on current model and do model selection based on the MMD score compared to the train set
if epoch % sample_interval == sample_interval - 1 and config.eval_from<epoch:
with torch.no_grad():
wandb_dict = {}
for num_noiselevel in config.num_levels:
results = sample_testing(config,f"{config.model_save_dir}",epoch,num_noiselevel,train_dl)
wandb_dict.update({f"degree_mmd_{num_noiselevel}": results["degree"],f"cluster_mmd_{num_noiselevel}": results["cluster"],f"orbit_mmd_{num_noiselevel}": results["orbit"],f"trainloss": mean_train_loss,f"testloss": mean_test_loss})
lastmmd[num_noiselevel] = results
#wandb.log(wandb_dict)
logging.info(wandb_dict)
# Model selection based on the lowest MMD score on Traindata
if sum([results[key] if "likelyhood" not in key else 1-results[key] for key in results.keys()]) < best_score:
best_epoch = epoch
best_score = sum([results[key] if "likelyhood" not in key else 1-results[key] for key in results.keys()])
to_save = {
'model': model.state_dict(),
'sigma_list': sigma_list,
'config': edict2dict(config),
'epoch': epoch,
'train_loss': best_score,
'test_loss': mean_test_loss,
'train_loss_item': mean_train_loss_item,
'test_loss_item': mean_test_loss_item,
'optimizer_state_dict': optimizer.state_dict(),
'scheduler_state_dict': scheduler.state_dict()
}
torch.save(to_save, os.path.join(config.model_save_dir,
f"best/{config.dataset.name}.pth"))
else:
wandb_dict = {}
for num_noiselevel in config.num_levels:
wandb_dict.update({f"degree_mmd_{num_noiselevel}": lastmmd[num_noiselevel]["degree"],f"cluster_mmd_{num_noiselevel}": lastmmd[num_noiselevel]["cluster"],f"orbit_mmd_{num_noiselevel}": lastmmd[num_noiselevel]["orbit"],"trainloss": mean_train_loss,"testloss": mean_test_loss})
#wandb.log(wandb_dict)
logging.info(wandb_dict)
# Test the selected model with lowest train loss
if epoch % config.finalinterval == config.finalinterval-1 and config.eval_from < epoch:
# Test the selected model with lowest train loss
wandb_dict = {}
with torch.no_grad():
results = sample_main(config,f"{config.model_save_dir}/bestloss",epoch,num_noiselevel)
wandb_dict.update({f"degree_mmd_{num_noiselevel}_bestloss": results["degree"], f"cluster_mmd_{num_noiselevel}_bestloss": results["cluster"], f"orbit_mmd_{num_noiselevel}_bestloss": results["orbit"], f"testloss_bestloss": best_score_loss})
#wandb.log(wandb_dict)
logging.info(f"MMD of Epoch {epoch} with modelselection based on trainloss: {wandb_dict}")
# Test the model without modelselection
results = sample_main(config,f"{config.model_save_dir}",epoch,num_noiselevel)
wandb_dict.update({f"degree_mmd_{num_noiselevel}_main": results["degree"], f"cluster_mmd_{num_noiselevel}_main": results["cluster"], f"orbit_mmd_{num_noiselevel}_main": results["orbit"], f"testloss_bestloss": best_score_loss})
#wandb.log(wandb_dict)
logging.info(f"MMD of Epoch {epoch} without modelselection: {wandb_dict}")
# Test the selected model with best train-mmd score
results = sample_main(config,f"{config.model_save_dir}/best",epoch,num_noiselevel)
wandb_dict.update({f"degree_mmd_{num_noiselevel}_best": results["degree"], f"cluster_mmd_{num_noiselevel}_best": results["cluster"] })
#wandb.log(wandb_dict)
logging.info(f"MMD of Epoch {epoch} with modelselection based on mmd performance: {wandb_dict}")
def train_main(config, args):
config.train.sigmas = np.linspace(0,0.5,config.num_levels[0]+1).tolist()
set_seed_and_logger(config, args)
train_dl, test_dl = load_data(config)
# mc_sampler = get_mc_sampler(config)
# Here, the `model` get `num_classes=len(sigma_list)`
model = get_score_model(config)
param_strings = []
max_string_len = 126
for name, param in model.named_parameters():
if param.requires_grad:
line = '.' * max(0, max_string_len - len(name) - len(str(param.size())))
param_strings.append(f"{name} {line} {param.size()}")
param_string = '\n'.join(param_strings)
logging.info(f"Parameters: \n{param_string}")
total_params = sum(p.numel() for p in model.parameters())
total_trainable_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
logging.info(f"Parameters Count: {total_params}, Trainable: {total_trainable_params}")
optimizer = optim.Adam(model.parameters(),
lr=config.train.lr_init,
betas=(0.9, 0.999), eps=1e-8,
weight_decay=config.train.weight_decay)
#wandb.login(key="")
#wandb.init(project="", entity="",config=config)
sigma_list = len(config.train.sigmas)
fit(model, optimizer, None, train_dl,
max_node_number=config.dataset.max_node_num,
max_epoch=config.train.max_epoch,
config=config,
save_interval=config.train.save_interval,
sample_interval=config.train.sample_interval,
sigma_length=sigma_list,
sample_from_sigma_delta=0.0,
test_dl=test_dl
)
if __name__ == "__main__":
# torch.autograd.set_detect_anomaly(True)
args = parse_arguments('train_ego_small.yaml')
ori_config_dict = get_config(args)
config_dict = edict(ori_config_dict.copy())
process_config(config_dict)
config_dict.model.name = "ppgn"
train_main(config_dict, args)