-
Notifications
You must be signed in to change notification settings - Fork 0
/
deconvolve.py
303 lines (239 loc) · 10.8 KB
/
deconvolve.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
#!/usr/bin/python3 -u
import numpy as np
import pandas as pd
from scipy import optimize
import argparse
import os.path as op
import sys
from multiprocessing import Pool
import math
import matplotlib.pylab as plt
import matplotlib.cm
import matplotlib.colors
ATLAS_FILE = './reference_atlas.csv'
OUT_PATH = '.'
# Plotting parameters:
NR_CHRS_XTICKS = 30 # number of characters to be printed of the xticks
FIG_SIZE = (15, 7) # figure size
COLOR_MAP = 'tab10' # color map. See https://matplotlib.org/users/colormaps.html
#COLOR_MAP = 'Vega10'
# tissues with less than OTHERS_THRESH contribution will be clustered to 'other' (black):
OTHERS_THRESH = 0.01
####################################
# Plotting methods #
####################################
def hide_small_tissues(df):
"""
tissues with very small contribution are grouped to the 'other' category.
:return: The DataFrame with the new category ('other'),
where the low-contribution tissues are set to 0.
"""
others = df[df < OTHERS_THRESH].sum()
df[df < OTHERS_THRESH] = 0.0
df = df.append(others.rename('other'))
return df
def gen_bars_colors_hatches(nr_tissues):
"""
Generate combinations of colors and hatches for the tissues bars
Every tissue will get a tuple of (color, hatch)
the last tuple is for the 'other' category, and is always black with no hatch.
:return: a list of tuples, with length == nr_tissues
"""
matplotlib.rcParams['hatch.linewidth'] = 0.3
hatches = [None, 'xxx', '...', 'O', '++'][:nr_tissues // 7]
nr_colors = int(math.ceil(nr_tissues / len(hatches)) + 1)
# generate bars colors:
cmap = matplotlib.cm.get_cmap(COLOR_MAP)
norm = matplotlib.colors.Normalize(vmin=0.0, vmax=float(nr_colors))
colors = [cmap(norm(k)) for k in range(nr_colors)]
def get_i_bar_tuple(i):
color_ind = i % nr_colors
hatch_ind = int(i // math.ceil(nr_tissues / len(hatches)))
return colors[color_ind], hatches[hatch_ind]
colors_hatches_list = [get_i_bar_tuple(i) for i in range(nr_tissues - 1)]
return colors_hatches_list + [((0, 0, 0, 1), None)]
def plot_res(df, outpath, show=False):
df = hide_small_tissues(df)
nr_tissues, nr_samples = df.shape
# generate bars colors and hatches:
colors_hatches = gen_bars_colors_hatches(nr_tissues)
plt.figure(figsize=FIG_SIZE)
r = [i for i in range(nr_samples)]
bottom = np.zeros(nr_samples)
for i in range(nr_tissues):
plt.bar(r, list(df.iloc[i, :]),
edgecolor='white',
width=0.85,
label=df.index[i],
bottom=bottom,
color=colors_hatches[i][0],
hatch=colors_hatches[i][1])
bottom += np.array(df.iloc[i, :])
# Custom x axis
plt.xticks(r, [w[:NR_CHRS_XTICKS] for w in df.columns], rotation='vertical', fontsize=9)
plt.xlabel("sample")
plt.xlim(-.6, nr_samples - .4)
# Add a legend and a title
plt.legend(loc='upper left', bbox_to_anchor=(1, 1), ncol=1)
plt.title('Deconvolution Results\n' + op.basename(outpath))
# adjust layout, save and show
plt.tight_layout(rect=[0, 0, .83, 1])
plt.savefig(outpath + '_deconv_plot.png')
if show:
plt.show()
####################################
# Deconvolve class #
####################################
class Deconvolve:
def __init__(self, atlas_path, samp_path, out_dir, resid, slim=False, plot=False):
self.out_dir = out_dir # Output dir to save mixture results and plot
self.slim = slim # Write results table w\o indexes and header (bool)
self.plot = plot # Plot results (bool)
self.resid = resid # Output residuals as well
self.out_bname = self.get_bname(samp_path) # output files path w/o extension
# Load input files:
self.atlas = self.load_atlas(atlas_path) # Atlas
self.samples = self.load_sample(samp_path) # Samples to deconvolve
def get_bname(self, samp_path):
"""
Compose output files path:
join the out_dir path with the basename of the samples file
remove csv and gz extensions.
"""
base_fname = op.basename(samp_path)
if base_fname.endswith('.gz'):
base_fname = op.splitext(base_fname)[0]
base_fname = op.splitext(base_fname)[0]
return op.join(self.out_dir, base_fname)
@staticmethod
def load_atlas(atlas_path):
"""
Read the atlas csv file, save data in self.atlas
:param atlas_path: Path to the atlas csv file
"""
# validate path:
Deconvolve._validate_csv_file(atlas_path)
# Read atlas, sort it and drop duplicates
# print('atlas_path', atlas_path)
df = pd.read_csv(atlas_path)
df.rename(columns={list(df)[0]: 'acc'}, inplace=True)
df = df.sort_values(by='acc').drop_duplicates(subset='acc').reset_index(drop=True)
return df
@staticmethod
def _validate_csv_file(csv_path):
"""
Validate an input csv file. Raise an exception or print warning if necessary.
:param csv_path: input csv path
"""
err_msg = ''
# check if file exists and ends with 'csv':
if not op.isfile(csv_path):
err_msg = 'no such file:\n%s' % csv_path
elif not (csv_path.endswith('csv') or csv_path.endswith('csv.gz')):
err_msg = 'file must end with ".csv[.gz]":\n%s' % csv_path
# take a peek and validate the file format
else:
input_head = pd.read_csv(csv_path, nrows=4)
# at least two columns:
if input_head.shape[1] < 2:
err_msg = 'file must contain at least 2 columns (accessions and a values). '
# first column must be Illumina IDs column
elif not str(input_head.iloc[0, 0]).startswith('cg'):
err_msg = 'invalid Illumina ID column'
# print a warning if the second column in the csv file has a numeric header
# (this probably means there is no header)
if input_head.columns[1].replace('.', '', 1).isdigit():
print('Warning: input files should have headers', file=sys.stderr)
if err_msg:
err_msg = op.basename(csv_path) + ': ' + err_msg
raise ValueError(err_msg)
@staticmethod
def decon_single_samp(samp, atlas):
"""
Deconvolve a single sample, using NNLS, to get the mixture coefficients.
:param samp: a vector of a single sample
:param atlas: the atlas DadtaFrame
:return: the mixture coefficients (of size 25)
"""
name = samp.columns[1]
# remove missing sites from both sample and atlas:
data = samp.merge(atlas, on='acc', how='inner').copy().dropna(axis=0)
if data.empty:
print('Warning: skipping an empty sample {}'.format(name), file=sys.stderr)
# print('Dropped {} missing sites'.format(self.atlas.shape[0] - red_atlas.shape[0]))
return np.nan
print('{}: {} sites'.format(name, data.shape[0]), file=sys.stderr)
del data['acc']
samp = data.iloc[:, 0]
red_atlas = data.iloc[:, 1:]
# get the mixture coefficients by deconvolution (non-negative least squares)
mixture, residual = optimize.nnls(red_atlas, samp)
mixture /= np.sum(mixture)
return mixture, residual
def load_sample(self, samp_path):
"""
Read samples csv file. Reduce it to the atlas sites, and save data in self.samples
Note: samples file must contain a header line.
"""
# validate path:
Deconvolve._validate_csv_file(samp_path)
samples = pd.read_csv(samp_path)
samples.rename(columns={list(samples)[0]: 'acc'}, inplace=True)
samples = samples.sort_values(by='acc').drop_duplicates(subset='acc').reset_index(drop=True)
samples = samples.merge(self.atlas['acc'].to_frame(), how='inner', on='acc')
return samples
def run(self):
# run deconvolution on all samples in parallel
processes = []
with Pool() as p:
for i, smp_name in enumerate(list(self.samples)[1:]):
params = (self.samples[['acc', smp_name]], self.atlas)
processes.append(p.apply_async(Deconvolve.decon_single_samp, params))
p.close()
p.join()
self.samples = self.samples.iloc[:, 1:]
# collect the results to 'res_table':
arr = [pr.get() for pr in processes]
res_table = np.empty((self.atlas.shape[1] - 1, self.samples.shape[1]))
resids_table = np.empty((self.samples.shape[1], 1))
for i in range(len(arr)):
res_table[:, i], resids_table[i] = arr[i]
df = pd.DataFrame(res_table, columns=self.samples.columns, index=list(self.atlas.columns)[1:])
# Dump results
out_path = self.out_bname + '_deconv_output.csv'
if self.slim: # without indexes and header line
df.to_csv(out_path, index=None, header=None, float_format='%.3f')
else:
df.to_csv(out_path, float_format='%.3f')
if self.resid:
rf = pd.DataFrame(resids_table, columns=['Residuals'], index=self.samples.columns)
rf.to_csv(self.out_bname + '_residuals.csv', float_format='%.3f')
# Plot pie charts
plot_res(df, self.out_bname, self.plot)
####################################
# main #
####################################
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--atlas_path', '-a', default=ATLAS_FILE,
help='Path to Atlas csv file.\nThe first column must be'
' Illumina IDs (e.g cg00000029)')
parser.add_argument('samples_path',
help='Path to samples csv file. It must have a header line.\n'
'The first column must be Illumina IDs (e.g cg00000029)')
parser.add_argument('--slim', action='store_true',
help='Write the results table *without indexes and header line*')
parser.add_argument('--residuals', '-r', action='store_true',
help='Output residuals to a separate file')
parser.add_argument('--plot', action='store_true',
help='Plot stacked bars of the results')
parser.add_argument('--out_dir', '-o', default=OUT_PATH, help='Output directory')
args = parser.parse_args()
Deconvolve(atlas_path=args.atlas_path,
samp_path=args.samples_path,
out_dir=args.out_dir,
resid=args.residuals,
slim=args.slim,
plot=args.plot).run()
if __name__ == '__main__':
main()