-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata.py
763 lines (600 loc) · 30.7 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
import torch
import copy
import os
import pickle
import math
import numpy as np
from datasets import load_dataset
from sklearn.metrics.pairwise import cosine_similarity
from sklearn.model_selection import train_test_split
import pandas as pd
from torch.utils.data import RandomSampler, DataLoader, Dataset
from transformers import BertModel, BertTokenizer
class SeededRandomSampler(RandomSampler):
def __init__(self, dataset, replacement=False, num_samples=None, seed=0):
old_state = torch.get_rng_state()
torch.manual_seed(seed)
self.state = torch.get_rng_state()
torch.set_rng_state(old_state)
super(SeededRandomSampler, self).__init__(dataset, replacement, num_samples)
self.dataset = dataset
def __iter__(self):
size = len(self.dataset)
old_state = torch.get_rng_state()
torch.set_rng_state(self.state)
if self.replacement:
iterator = iter(torch.randint(high=size, size=(self.num_samples,), dtype=torch.int64).tolist())
else:
iterator = iter(torch.randperm(size).tolist())
self.state = torch.get_rng_state()
torch.set_rng_state(old_state)
return iterator
class DatasetLoader():
def __init__(self, name, batch_size, dataset, shuffle_train_seed=0):
self.name = name
self.batch_size = batch_size
self.shuffle_train_seed = shuffle_train_seed
self.train_dataset = copy.deepcopy(dataset)
self.train_dataset.train = True
self.test_dataset = copy.deepcopy(dataset)
self.test_dataset.train = False
def trainloader(self):
sampler = SeededRandomSampler(self.train_dataset, seed=self.shuffle_train_seed)
trainloader = DataLoader(self.train_dataset, batch_size=self.batch_size, sampler=sampler, pin_memory=True)
return trainloader
def testloader(self):
testloader = DataLoader(self.test_dataset, batch_size = 64, shuffle=False, pin_memory=True)
return testloader
class TextDataset(Dataset):
def __init__(self, dataset_name, train_size=0.8, num_labelled=1000, num_labelled_test=1000, split_seed=0, label_seed=0, device=None, full_test=True, prompt_format=0):
self.dataset_name = dataset_name
self.train = True
self.split_seed = split_seed
self.label_seed = label_seed
self.full_test = full_test
self.train_size = train_size
self.num_labelled = num_labelled
self.num_labelled_test = num_labelled_test
if not self.full_test and self.num_labelled_test == 0:
self.num_labelled_test = self.num_labelled
self.device = device
self.prompt_format = prompt_format
self.text, self.targets = self.initialise_dataset_from_huggingface()
self.num_classes = len(self.classes)
self.split_train_test()
self.select_labelled_data()
def initialise_dataset_from_huggingface(self):
if self.dataset_name == 'sst2':
print('Using SST-2 dataset.')
dataset = load_dataset('glue', self.dataset_name)
data = pd.concat([pd.DataFrame(dataset['train']), pd.DataFrame(dataset['validation'])])
if self.prompt_format in [0, 1, 2]:
self.classes = ['negative', 'positive']
elif self.prompt_format in [3]:
self.classes = ['terrible', 'great']
else:
raise NotImplemented
return data.sentence.tolist(), data.label.tolist()
elif self.dataset_name == 'cola':
print(f'Using cola dataset')
dataset = load_dataset('glue', self.dataset_name)
data = pd.concat([pd.DataFrame(dataset['train']), pd.DataFrame(dataset['validation'])])
if self.prompt_format in [0, 1]:
self.classes = ['No', 'Yes']
elif self.prompt_format in [2]:
self.classes = ['Yes', 'No']
elif self.prompt_format in [3]:
self.classes = ['not acceptable', 'acceptable']
else:
raise NotImplemented
return data.sentence.tolist(), data.label.tolist()
elif self.dataset_name == 'mrpc':
print('Using mrpc')
dataset = load_dataset('glue', self.dataset_name)
data = pd.concat([pd.DataFrame(dataset['train']), pd.DataFrame(dataset['validation']), pd.DataFrame(dataset['test'])])
texts = [f'Sentence 1: {sent1}; Sentence 2: {sent2}' for sent1, sent2 in zip(data.sentence1.tolist(), data.sentence2.tolist())]
if self.prompt_format in [0, 1]:
self.classes = ['No', 'Yes']
elif self.prompt_format in [2]:
self.classes = ['Yes', 'No']
elif self.prompt_format in [3]:
self.classes = ['not equivalent', 'equivalent']
else:
raise NotImplemented
return texts, data.label.tolist()
elif self.dataset_name == 'rte':
print('Using rte')
dataset = load_dataset('glue', self.dataset_name)
data = pd.concat([pd.DataFrame(dataset['train']), pd.DataFrame(dataset['validation'])])
texts = [f'Premise: {sent1}; Hypothesis: {sent2}' for sent1, sent2 in zip(data.sentence1.tolist(), data.sentence2.tolist())]
self.classes = ['not entailment', 'entailment']
return texts, data.label.tolist()
elif self.dataset_name == 'boolq':
print('Using BoolQ dataset')
dataset = load_dataset('super_glue', self.dataset_name)
data = pd.concat([pd.DataFrame(dataset['train']), pd.DataFrame(dataset['validation'])])
texts = [f'Question: {question}\nPassage: {passage}' for question, passage in zip(data.question.tolist(), data.passage.tolist())]
self.classes = ['No', 'Yes']
return texts, data.label.tolist()
elif self.dataset_name == 'trec':
print('Using TREC dataset')
dataset = load_dataset('trec')
data = pd.concat([pd.DataFrame(dataset['train']), pd.DataFrame(dataset['test'])])
self.classes = ['Expression', 'Entity', 'Description', 'Human', 'Location', 'Number']
return data.text.tolist(), data.coarse_label.tolist()
elif self.dataset_name == 'ag_news':
print('Using AG News dataset')
dataset = load_dataset('ag_news')
data = pd.concat([pd.DataFrame(dataset['train']), pd.DataFrame(dataset['test'])])
self.classes = ['World', 'Sports', 'Business', 'Science and Technology']
return data.text.tolist(), data.label.tolist()
elif self.dataset_name == 'snips':
print('Using SNIPS dataset')
dataset = load_dataset('benayas/snips')
data = pd.concat([pd.DataFrame(dataset['train']), pd.DataFrame(dataset['test'])])
mapper = {
'AddToPlaylist': 0,
'GetWeather': 1,
'SearchScreeningEvent': 2,
'PlayMusic': 3,
'SearchCreativeWork': 4,
'RateBook': 5,
'BookRestaurant': 6,
}
data['label'] = data['category'].apply(lambda x: mapper[x])
self.classes = ['Playlist', 'Weather', 'Event', 'Musing', 'Creative Work', 'Rate Book', 'Book Restaurant']
return data.text.tolist(), data.label.tolist()
elif self.dataset_name == 'db_pedia':
print('Using DB Pedia dataset')
dataset = load_dataset('fancyzhx/dbpedia_14')
data = pd.concat([pd.DataFrame(dataset['train']), pd.DataFrame(dataset['test'])])
self.classes = ['Company', 'Educational Institution', 'Artist', 'Athlete', 'Office Holder', 'Transportation', 'Building', 'Natural Place', 'Village', 'Animal', 'Plant', 'Album', 'Film', 'Written Work']
return data.content.tolist(), data.label.tolist()
else:
raise NotImplemented('The dataset cannot be initiated!')
def split_train_test(self, train_test_indices=None):
if train_test_indices is None:
old_state = torch.get_rng_state()
torch.manual_seed(self.split_seed)
indices = list(range(len(self.text)))
self.train_indices, self.test_indices = train_test_split(indices, train_size=self.train_size, random_state=self.split_seed, stratify=self.targets)
torch.set_rng_state(old_state)
else:
self.train_indices, self.test_indices = train_test_indices
self.train_text = [self.text[idx] for idx in self.train_indices]
self.train_targets = [self.targets[idx] for idx in self.train_indices]
self.test_text = [self.text[idx] for idx in self.test_indices]
self.test_targets = [self.targets[idx] for idx in self.test_indices]
def select_labelled_data(self):
if self.num_labelled > 0:
old_state = torch.get_rng_state()
torch.manual_seed(self.label_seed)
to_select = math.ceil(self.num_labelled / self.num_classes)
targets = np.array(self.train_targets)
texts = []
labels = []
train_indices = []
for cls in range(self.num_classes):
inds = np.argwhere(targets == cls).reshape(-1)
indices = torch.randperm(len(inds))
inds = inds[indices]
inds = inds[:to_select]
train_indices.extend(inds)
for idx in inds:
texts.append(self.train_text[idx])
labels.append(self.train_targets[idx])
indices = torch.randperm(len(labels))
self.train_text = [texts[idx] for idx in indices]
self.train_targets = [labels[idx] for idx in indices]
self.train_indices = train_indices
print(f'Number of selected Train samples: {len(self.train_targets)}')
torch.set_rng_state(old_state)
if not self.full_test and self.num_labelled_test > 0:
old_state = torch.get_rng_state()
torch.manual_seed(self.label_seed)
to_select = math.ceil(self.num_labelled_test / self.num_classes)
targets = np.array(self.test_targets)
texts = []
labels = []
test_indices = []
for cls in range(self.num_classes):
inds = np.argwhere(targets == cls).reshape(-1)
indices = torch.randperm(len(inds))
inds = inds[indices]
inds = inds[:to_select]
test_indices.extend(inds)
for idx in inds:
texts.append(self.test_text[idx])
labels.append(self.test_targets[idx])
indices = torch.randperm(len(labels))
self.test_text = [texts[idx] for idx in indices]
self.test_targets = [labels[idx] for idx in indices]
self.test_indices = test_indices
print(len(self.test_text))
print(f'Number of selected Test samples: {len(self.test_targets)}')
torch.set_rng_state(old_state)
def prepare_dataset_keywords(self):
options = ''
for idx, text in enumerate(self.classes):
options += f' {idx + 1}) {text}'
prompt = self.prompt_format
if self.dataset_name == 'sst2':
if prompt == 0:
instruction = f'Determine sentiment of the sentence using following options:{options}'
elif prompt == 1:
instruction = 'Sentiment?'
elif prompt == 2:
instruction = 'Senstiment is'
elif prompt == 3:
instruction = 'It was'
else:
raise NotImplemented
sentence_start = 'Sentence'
answer_start = 'Answer'
task_type = 'sentiment'
elif self.dataset_name == 'cola':
if prompt == 0:
instruction = f'Determine grammatical acceptability of the Sentence using following options:{options}'
elif prompt == 1:
instruction = 'Grammatically acceptable?'
elif prompt == 2:
instruction = 'Grammar problems?'
elif prompt == 3:
instruction = 'It is'
else:
raise NotImplemented
sentence_start = 'Sentence'
answer_start = 'Answer'
task_type = 'grammatical acceptability'
elif self.dataset_name == 'mrpc':
if prompt == 0:
instruction = f'Determine whether the Sentence Pair is semantically equivalent using following options:{options}'
elif prompt == 1:
instruction = 'Semantically equivalent sentences?'
elif prompt == 2:
instruction = 'Semantically different sentences?'
elif prompt == 3:
instruction = 'Sentences are'
else:
raise NotImplemented
sentence_start = 'Sentence Pair'
answer_start = 'Answer'
task_type = 'semantical equivalence'
elif self.dataset_name == 'rte':
instruction = f'Determine whether the Premise entails the Hypothesis using following options:{options}'
sentence_start = ''
answer_start = 'Answer'
task_type = 'entailment'
elif self.dataset_name == 'boolq':
instruction = f'Determine whether the Passage contains Answer to the Question using following options:{options}'
sentence_start = ''
answer_start = 'Answer'
task_type = 'presence'
elif self.dataset_name in ['trec', 'ag_news', 'db_pedia']:
if prompt == 0:
instruction = f'Determine topic of the sentence using following options:{options}'
elif prompt == 1:
instruction = 'Topic?'
elif prompt == 2:
instruction = 'Topic is'
elif prompt == 3:
instruction = 'This is about'
else:
raise NotImplemented
sentence_start = 'Sentence'
answer_start = 'Answer'
task_type = 'topic'
elif self.dataset_name == 'snips':
if prompt == 0:
instruction = f'Determine intent of the sentence using following options:{options}'
elif prompt == 1:
instruction = 'Intent?'
elif prompt == 2:
instruction = 'Intent is'
elif prompt == 3:
instruction = 'User requested'
else:
raise NotImplemented
sentence_start = 'Sentence'
answer_start = 'Answer'
task_type = 'intent'
return instruction, sentence_start, answer_start, task_type
class ICLDataset(TextDataset):
def __init__(self, dataset_name, train_size=0.8, num_labelled=1000, num_labelled_test=1000, split_seed=0, label_seed=0, device=None, full_test=True, num_shots=2, num_classes=2, choice_seed=0, order_seed=0, model_name='flan-t5', prompt_format=0):
super(ICLDataset, self).__init__(dataset_name, train_size, num_labelled, num_labelled_test, split_seed, label_seed, device, full_test, prompt_format)
self.num_shots = num_shots
self.choice_seed = choice_seed
self.order_seed = order_seed
self.model_name = model_name
self.instructions, self.context_samples = self.prepare_dataset_for_use()
def prepare_dataset_for_use(self):
texts, targets = self.__choose_shots()
texts, targets = self.__sample_reorder(texts, targets)
instructions, context_samples = self.__prepare_prompt(texts, targets)
return instructions, context_samples
def batch_data_for_evaluation(self, batch=64):
start_idx = 0
end_idx = batch
while start_idx < len(self.test_text):
data = self.test_text[start_idx : end_idx]
labels = self.test_targets[start_idx : end_idx]
yield data, labels
start_idx = end_idx
end_idx += batch
def __len__(self):
return len(self.test_text)
def __choose_shots(self):
to_choose = int(self.num_shots)
old_state = torch.get_rng_state()
torch.manual_seed(self.choice_seed)
targets = np.array(self.train_targets)
texts = []
labels = []
for cls in range(self.num_classes):
inds = np.argwhere(targets == cls).reshape(-1)
indices = torch.randperm(len(inds))
inds = inds[indices]
inds = inds[:to_choose]
for idx in inds:
texts.append(self.train_text[idx])
labels.append(self.train_targets[idx])
torch.set_rng_state(old_state)
return texts, labels
def __sample_reorder(self, texts, targets):
old_state = torch.get_rng_state()
torch.manual_seed(self.order_seed)
indices = torch.randperm(len(texts))
texts = [texts[idx] for idx in indices]
targets = [targets[idx] for idx in indices]
torch.set_rng_state(old_state)
return texts, targets
def __prepare_prompt(self, texts, targets):
instruction, sentence_start, answer_start, task_type = self.prepare_dataset_keywords()
instructions = {
'instruction': instruction,
'sentence_start': sentence_start,
'answer_start': answer_start,
'task_type': task_type
}
context_samples = [(texts[idx], self.classes[targets[idx]]) for idx in range(len(targets))]
return instructions, context_samples
class SimilarityICLDataset(ICLDataset):
def __init__(self, dataset_name, train_size=0.8, num_labelled=1000, num_labelled_test=1000, split_seed=0, label_seed=0, device=None, full_test=True, num_shots=4, num_classes=2, choice_seed=0, order_seed=0, model_name='flan-t5', prompt_format=0):
super(SimilarityICLDataset, self).__init__(dataset_name, train_size, num_labelled, num_labelled_test, split_seed, label_seed, device, full_test, num_shots, num_classes, choice_seed, order_seed, model_name, prompt_format)
self.num_shots = num_shots
self.choice_seed = choice_seed
self.order_seed = order_seed
with open(os.path.join('data', f'{dataset_name}_embeddings.pkl'), 'rb') as file:
self.embeddings = pickle.load(file)
self.model_name = model_name
self.instructions, self.context_samples = self.prepare_dataset_for_use()
def prepare_dataset_for_use(self):
texts, targets = self.__choose_shots()
texts, targets = self.__sample_reorder(texts, targets)
prompts, targets = self.__prepare_prompt(texts, targets)
return prompts, targets
def batch_data_for_evaluation(self, batch=64):
start_idx = 0
end_idx = batch
while start_idx < len(self.prompts):
data = self.prompts[start_idx : end_idx]
labels = self.targets[start_idx : end_idx]
yield data, labels
start_idx = end_idx
end_idx += batch
def __choose_shots(self):
to_choose = int(self.num_shots / self.num_classes)
test_embeddings = self.embeddings[self.test_indices]
train_true_embeddings = self.embeddings[self.true_indices]
train_false_embeddings = self.embeddings[self.false_indices]
texts = []
targets = []
old_state = torch.get_rng_state()
torch.manual_seed(self.choice_seed)
indices_true = cosine_similarity(test_embeddings, train_true_embeddings).argsort()[::-1][:, :to_choose]
indices_false = cosine_similarity(test_embeddings, train_false_embeddings).argsort()[::-1][:, :to_choose]
for true_idx, false_idx in zip(indices_true, indices_false):
temp_texts = [self.train_text[self.used_true_indices[idx]] for idx in true_idx]
temp_texts.extend([self.train_text[self.used_false_indices[idx]] for idx in false_idx])
texts.append(temp_texts)
targets = [self.train_targets[self.used_true_indices[idx]] for idx in indices_true[0]]
targets.extend([self.train_targets[self.used_false_indices[idx]] for idx in indices_false[0]])
torch.set_rng_state(old_state)
return texts, targets
class PromptDataset(TextDataset):
def __init__(self, dataset_name, train_size=0.8, num_labelled=1000, num_labelled_test=1000, split_seed=0, label_seed=0, device=None, full_test=True, model_name='flan-t5', prompt_format=0):
super(PromptDataset, self).__init__(dataset_name, train_size, num_labelled, num_labelled_test, split_seed, label_seed, device, full_test, prompt_format)
self.model_name = model_name
self.instructions, self.context_samples = self.prepare_dataset_for_use()
def prepare_dataset_for_use(self):
instructions, context_samples = self.__prepare_prompt()
return instructions, context_samples
def batch_data_for_evaluation(self, batch=64):
start_idx = 0
end_idx = batch
while start_idx < len(self.test_text):
data = self.test_text[start_idx : end_idx]
labels = self.test_targets[start_idx : end_idx]
yield data, labels
start_idx = end_idx
end_idx += batch
def __len__(self):
return len(self.test_text)
def __prepare_prompt(self):
instruction, sentence_start, answer_start, task_type = self.prepare_dataset_keywords()
instructions = {
'instruction': instruction,
'sentence_start': sentence_start,
'answer_start': answer_start,
'task_type': task_type
}
context_samples = []
return instructions, context_samples
class InstructionTuningDataset(ICLDataset):
def __init__(self, dataset_name, train_size=0.8, num_labelled=1000, num_labelled_test=1000, split_seed=0, label_seed=0, device=None, full_test=True, model_name='flan-t5', prompt_format=0):
super(InstructionTuningDataset, self).__init__(dataset_name, train_size, num_labelled, num_labelled_test, split_seed, label_seed, device, full_test, 0, 0, 0, 0, model_name, prompt_format)
self.model_name = model_name
self.instructions, self.context_samples = self.prepare_dataset_for_use()
def prepare_dataset_for_use(self):
instructions, context_samples = self.__prepare_prompt(self.train_text, self.train_targets)
return instructions, context_samples
def batch_data_for_evaluation(self, batch=64):
start_idx = 0
end_idx = batch
while start_idx < len(self.prompts):
data = self.prompts[start_idx : end_idx]
labels = self.targets[start_idx : end_idx]
yield data, labels
start_idx = end_idx
end_idx += batch
def __len__(self):
return len(self.prompts)
def __prepare_prompt(self, texts, targets):
instruction, sentence_start, answer_start, task_type = self.prepare_dataset_keywords()
instructions = {
'instruction': instruction,
'sentence_start': sentence_start,
'answer_start': answer_start,
'task_type': task_type
}
context_samples = [(texts[idx], self.classes[targets[idx]]) for idx in range(len(targets))]
return instructions, context_samples
class FineTuningDataset(TextDataset):
def __init__(self, dataset_name, train_size=0.8, num_labelled=1000, num_labelled_test=1000, split_seed=0, label_seed=0, device=None, full_test=True, tokenizer=None, max_len=50):
super(FineTuningDataset, self).__init__(dataset_name, train_size, num_labelled, num_labelled_test, split_seed, label_seed, device, full_test)
self.tokenizer = tokenizer
self.train = True
self.max_len = max_len
self.n_classes = self.num_classes
def __len__(self):
return len(self.train_text) if self.train else len(self.test_text)
def __getitem__(self, index):
text = str(self.train_text[index] if self.train else self.test_text[index])
target = self.train_targets[index] if self.train else self.test_targets[index]
inputs = self.tokenizer.encode_plus(
text,
add_special_tokens=True,
max_length=self.max_len,
padding='max_length',
truncation=True,
return_token_type_ids=True
)
ids = inputs['input_ids']
mask = inputs['attention_mask']
token_type_ids = inputs["token_type_ids"]
return {
'ids': torch.tensor(ids, dtype=torch.long),
'mask': torch.tensor(mask, dtype=torch.long),
'token_type_ids': torch.tensor(token_type_ids, dtype=torch.long),
'targets': torch.tensor(target, dtype=torch.long)
}
class MetaLearningDataset(TextDataset):
def __init__(self, dataset_name, train_size=0.8, num_labelled=1000, num_labelled_test=1000, split_seed=0, label_seed=0, device=None, full_test=True, max_len=50, num_tasks=16, num_shots=5, choice_seed=0, order_seed=0):
super(MetaLearningDataset, self).__init__(dataset_name, train_size, num_labelled, num_labelled_test, split_seed, label_seed, device, full_test)
self.num_tasks = num_tasks
self.num_shots = num_shots
self.train = True
self.max_length = max_len
self.n_classes = len(set(self.train_targets))
self.device = device
old_state = torch.get_rng_state()
torch.manual_seed(choice_seed)
self.choice_state = torch.get_rng_state()
torch.manual_seed(order_seed)
self.order_state = torch.get_rng_state()
torch.set_rng_state(old_state)
self.split_train_valid()
self.tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
self.embedding_model = BertModel.from_pretrained('bert-base-uncased')
self.embedding_model.to(device)
self.embedding_model.eval()
self.train_data = self.prepare_data(self.train_text)
self.valid_data = self.prepare_data(self.valid_text)
self.test_targets = np.array(self.test_targets)
def split_train_valid(self):
size = len(self.train_text)
old_state = torch.get_rng_state()
torch.manual_seed(self.split_seed)
indices = torch.randperm(size)
split = int(self.train_size * size)
self.train_indices = indices[:split]
self.test_indices = indices[split:]
torch.set_rng_state(old_state)
self.train_text = [self.train_text[idx] for idx in self.train_indices]
self.train_targets = np.array([self.train_targets[idx] for idx in self.train_indices])
self.valid_text = [self.train_text[idx] for idx in self.test_indices]
self.valid_targets = np.array([self.train_targets[idx] for idx in self.test_indices] )
def prepare_data(self, data):
inputs = self.tokenizer.encode_plus(
data,
add_special_tokens=True,
max_length=self.max_len,
padding='max_length',
truncation=True,
return_token_type_ids=True
)
ids = inputs['input_ids']
with torch.no_grad():
embeddings = self.embedding_model(ids.to(self.device)).cpu().detach().numpy()
return embeddings
def sample_data(self):
# Random sampling of data
self.train_targets = np.array(self.train_targets)
self.valid_targets = np.array(self.valid_targets)
train_true_indices = [idx for idx, target in enumerate(self.train_targets) if target == 1]
train_false_indices = [idx for idx, target in enumerate(self.train_targets) if target == 0]
valid_true_indices = [idx for idx, target in enumerate(self.valid_targets) if target == 1]
valid_false_indices = [idx for idx, target in enumerate(self.valid_targets) if target == 0]
old_state = torch.get_rng_state()
torch.set_rng_state(self.order_state)
train_data = []
train_labels = []
valid_data = []
valid_labels = []
for task_number in range(self.num_tasks):
train_true_indices = torch.randperm(len(train_true_indices))
valid_true_indices = torch.randperm(len(valid_true_indices))
train_false_indices = torch.randperm(len(train_false_indices))
valid_false_indices = torch.randperm(len(valid_false_indices))
train_indices = torch.randperm([train_true_indices[:self.num_shots]] + [train_false_indices[:self.num_shots]])
valid_indices = torch.randperm([valid_true_indices[:self.num_shots]] + [valid_false_indices[:self.num_shots]])
train_data.append(self.train_data[train_indices])
train_labels.append(self.train_targets[train_indices])
valid_data.append(self.train_data[valid_indices])
valid_labels.append(self.train_targets[valid_indices])
self.order_state = torch.get_rng_state()
torch.set_rng_state(old_state)
return {
'train': (torch.tensor(train_data), torch.tensor(train_labels)),
'test': (torch.tensor(valid_data), torch.tensor(valid_labels)),
}
def batch_data_for_evaluation(self, batch=64):
train_targets = np.concat((self.train_targets, self.valid_targets))
temp_train_data = np.concat((self.train_data, self.valid_data))
train_true_indices = [idx for idx, target in enumerate(train_targets) if target == 1]
train_false_indices = [idx for idx, target in enumerate(train_targets) if target == 0]
old_state = torch.get_rng_state()
torch.set_rng_state(self.choice_state)
train_data = []
train_labels = []
for task_number in range(self.num_tasks):
train_true_indices = torch.randperm(len(train_true_indices))
train_false_indices = torch.randperm(len(train_false_indices))
train_indices = torch.randperm([train_true_indices[:self.num_shots]] + [train_false_indices[:self.num_shots]])
train_data.append(self.train_data[train_indices])
train_labels.append(self.train_targets[train_indices])
self.choice_state = torch.get_rng_state()
torch.set_rng_state(old_state)
test_indices = list(range(len(self.test_targets)))
start_idx = 0
end_idx = batch
while start_idx <= len(test_indices):
test_data = [self.test_text[idx] for idx in test_indices[start_idx:end_idx]]
test_data = self.prepare_data(test_data)
test_labels = self.test_targets[test_indices[start_idx:end_idx]]
yield {
'train': (torch.tensor(train_data).float(), torch.tensor(train_labels)),
'test': (torch.tensor(test_data).float(), torch.tensor(test_labels)),
}
start_idx = end_idx
end_idx = end_idx + batch