-
Notifications
You must be signed in to change notification settings - Fork 223
/
Copy pathword2vec_inner.pyx
786 lines (662 loc) · 27.8 KB
/
word2vec_inner.pyx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
#!/usr/bin/env cython
# cython: boundscheck=False
# cython: wraparound=False
# cython: cdivision=True
# coding: utf-8
#
# Copyright (C) 2013 Radim Rehurek <[email protected]>
# Licensed under the GNU LGPL v2.1 - http://www.gnu.org/licenses/lgpl.html
import cython
import numpy as np
cimport numpy as np
from libc.math cimport exp
from libc.string cimport memset
cdef extern from "voidptr.h":
void* PyCObject_AsVoidPtr(object obj)
from scipy.linalg.blas import fblas
REAL = np.float32
ctypedef np.float32_t REAL_t
DEF MAX_SENTENCE_LEN = 10000
ctypedef void (*scopy_ptr) (const int *N, const float *X, const int *incX, float *Y, const int *incY) nogil
ctypedef void (*saxpy_ptr) (const int *N, const float *alpha, const float *X, const int *incX, float *Y, const int *incY) nogil
ctypedef float (*sdot_ptr) (const int *N, const float *X, const int *incX, const float *Y, const int *incY) nogil
ctypedef double (*dsdot_ptr) (const int *N, const float *X, const int *incX, const float *Y, const int *incY) nogil
ctypedef double (*snrm2_ptr) (const int *N, const float *X, const int *incX) nogil
ctypedef void (*sscal_ptr) (const int *N, const float *alpha, const float *X, const int *incX) nogil
ctypedef void (*fast_sentence_sg_hs_ptr) (
const np.uint32_t *word_point, const np.uint8_t *word_code, const int codelen,
REAL_t *syn0, REAL_t *syn1, const int size,
const np.uint32_t word2_index, const REAL_t alpha, REAL_t *work) nogil
ctypedef unsigned long long (*fast_sentence_sg_neg_ptr) (
const int negative, np.uint32_t *table, unsigned long long table_len,
REAL_t *syn0, REAL_t *syn1neg, const int size, const np.uint32_t word_index,
const np.uint32_t word2_index, const REAL_t alpha, REAL_t *work,
unsigned long long next_random) nogil
ctypedef void (*fast_sentence_cbow_hs_ptr) (
const np.uint32_t *word_point, const np.uint8_t *word_code, int codelens[MAX_SENTENCE_LEN],
REAL_t *neu1, REAL_t *syn0, REAL_t *syn1, const int size,
np.uint32_t indexes[MAX_SENTENCE_LEN], const REAL_t alpha, REAL_t *work,
int i, int j, int k, int cbow_mean) nogil
ctypedef unsigned long long (*fast_sentence_cbow_neg_ptr) (
const int negative, np.uint32_t *table, unsigned long long table_len, int codelens[MAX_SENTENCE_LEN],
REAL_t *neu1, REAL_t *syn0, REAL_t *syn1neg, const int size,
np.uint32_t indexes[MAX_SENTENCE_LEN], const REAL_t alpha, REAL_t *work,
int i, int j, int k, int cbow_mean, unsigned long long next_random) nogil
cdef scopy_ptr scopy=<scopy_ptr>PyCObject_AsVoidPtr(fblas.scopy._cpointer) # y = x
cdef saxpy_ptr saxpy=<saxpy_ptr>PyCObject_AsVoidPtr(fblas.saxpy._cpointer) # y += alpha * x
cdef sdot_ptr sdot=<sdot_ptr>PyCObject_AsVoidPtr(fblas.sdot._cpointer) # float = dot(x, y)
cdef dsdot_ptr dsdot=<dsdot_ptr>PyCObject_AsVoidPtr(fblas.sdot._cpointer) # double = dot(x, y)
cdef snrm2_ptr snrm2=<snrm2_ptr>PyCObject_AsVoidPtr(fblas.snrm2._cpointer) # sqrt(x^2)
cdef sscal_ptr sscal=<sscal_ptr>PyCObject_AsVoidPtr(fblas.sscal._cpointer) # x = alpha * x
cdef fast_sentence_sg_hs_ptr fast_sentence_sg_hs
cdef fast_sentence_sg_neg_ptr fast_sentence_sg_neg
cdef fast_sentence_cbow_hs_ptr fast_sentence_cbow_hs
cdef fast_sentence_cbow_neg_ptr fast_sentence_cbow_neg
DEF EXP_TABLE_SIZE = 1000
DEF MAX_EXP = 6
cdef REAL_t[EXP_TABLE_SIZE] EXP_TABLE
cdef int ONE = 1
cdef REAL_t ONEF = <REAL_t>1.0
cdef void fast_sentence0_sg_hs(
const np.uint32_t *word_point, const np.uint8_t *word_code, const int codelen,
REAL_t *syn0, REAL_t *syn1, const int size,
const np.uint32_t word2_index, const REAL_t alpha, REAL_t *work) nogil:
cdef long long a, b
cdef long long row1 = word2_index * size, row2
cdef REAL_t f, g
memset(work, 0, size * cython.sizeof(REAL_t))
for b in range(codelen):
row2 = word_point[b] * size
f = <REAL_t>dsdot(&size, &syn0[row1], &ONE, &syn1[row2], &ONE)
if f <= -MAX_EXP or f >= MAX_EXP:
continue
f = EXP_TABLE[<int>((f + MAX_EXP) * (EXP_TABLE_SIZE / MAX_EXP / 2))]
g = (1 - word_code[b] - f) * alpha
saxpy(&size, &g, &syn1[row2], &ONE, work, &ONE)
saxpy(&size, &g, &syn0[row1], &ONE, &syn1[row2], &ONE)
saxpy(&size, &ONEF, work, &ONE, &syn0[row1], &ONE)
cdef void fast_sentence1_sg_hs(
const np.uint32_t *word_point, const np.uint8_t *word_code, const int codelen,
REAL_t *syn0, REAL_t *syn1, const int size,
const np.uint32_t word2_index, const REAL_t alpha, REAL_t *work) nogil:
cdef long long a, b
cdef long long row1 = word2_index * size, row2
cdef REAL_t f, g
memset(work, 0, size * cython.sizeof(REAL_t))
for b in range(codelen):
row2 = word_point[b] * size
f = <REAL_t>sdot(&size, &syn0[row1], &ONE, &syn1[row2], &ONE)
if f <= -MAX_EXP or f >= MAX_EXP:
continue
f = EXP_TABLE[<int>((f + MAX_EXP) * (EXP_TABLE_SIZE / MAX_EXP / 2))]
g = (1 - word_code[b] - f) * alpha
saxpy(&size, &g, &syn1[row2], &ONE, work, &ONE)
saxpy(&size, &g, &syn0[row1], &ONE, &syn1[row2], &ONE)
saxpy(&size, &ONEF, work, &ONE, &syn0[row1], &ONE)
cdef void fast_sentence2_sg_hs(
const np.uint32_t *word_point, const np.uint8_t *word_code, const int codelen,
REAL_t *syn0, REAL_t *syn1, const int size,
const np.uint32_t word2_index, const REAL_t alpha, REAL_t *work) nogil:
cdef long long a, b
cdef long long row1 = word2_index * size, row2
cdef REAL_t f, g
for a in range(size):
work[a] = <REAL_t>0.0
for b in range(codelen):
row2 = word_point[b] * size
f = <REAL_t>0.0
for a in range(size):
f += syn0[row1 + a] * syn1[row2 + a]
if f <= -MAX_EXP or f >= MAX_EXP:
continue
f = EXP_TABLE[<int>((f + MAX_EXP) * (EXP_TABLE_SIZE / MAX_EXP / 2))]
g = (1 - word_code[b] - f) * alpha
for a in range(size):
work[a] += g * syn1[row2 + a]
for a in range(size):
syn1[row2 + a] += g * syn0[row1 + a]
for a in range(size):
syn0[row1 + a] += work[a]
cdef unsigned long long fast_sentence0_sg_neg(
const int negative, np.uint32_t *table, unsigned long long table_len,
REAL_t *syn0, REAL_t *syn1neg, const int size, const np.uint32_t word_index,
const np.uint32_t word2_index, const REAL_t alpha, REAL_t *work,
unsigned long long next_random) nogil:
cdef long long a
cdef long long row1 = word2_index * size, row2
cdef unsigned long long modulo = 281474976710655ULL
cdef REAL_t f, g, label
cdef np.uint32_t target_index
cdef int d
memset(work, 0, size * cython.sizeof(REAL_t))
for d in range(negative+1):
if d == 0:
target_index = word_index
label = ONEF
else:
target_index = table[(next_random >> 16) % table_len]
next_random = (next_random * <unsigned long long>25214903917ULL + 11) & modulo
if target_index == word_index:
continue
label = <REAL_t>0.0
row2 = target_index * size
f = <REAL_t>dsdot(&size, &syn0[row1], &ONE, &syn1neg[row2], &ONE)
if f <= -MAX_EXP or f >= MAX_EXP:
continue
f = EXP_TABLE[<int>((f + MAX_EXP) * (EXP_TABLE_SIZE / MAX_EXP / 2))]
g = (label - f) * alpha
saxpy(&size, &g, &syn1neg[row2], &ONE, work, &ONE)
saxpy(&size, &g, &syn0[row1], &ONE, &syn1neg[row2], &ONE)
saxpy(&size, &ONEF, work, &ONE, &syn0[row1], &ONE)
return next_random
cdef unsigned long long fast_sentence1_sg_neg(
const int negative, np.uint32_t *table, unsigned long long table_len,
REAL_t *syn0, REAL_t *syn1neg, const int size, const np.uint32_t word_index,
const np.uint32_t word2_index, const REAL_t alpha, REAL_t *work,
unsigned long long next_random) nogil:
cdef long long a
cdef long long row1 = word2_index * size, row2
cdef unsigned long long modulo = 281474976710655ULL
cdef REAL_t f, g, label
cdef np.uint32_t target_index
cdef int d
memset(work, 0, size * cython.sizeof(REAL_t))
for d in range(negative+1):
if d == 0:
target_index = word_index
label = ONEF
else:
target_index = table[(next_random >> 16) % table_len]
next_random = (next_random * <unsigned long long>25214903917ULL + 11) & modulo
if target_index == word_index:
continue
label = <REAL_t>0.0
row2 = target_index * size
f = <REAL_t>sdot(&size, &syn0[row1], &ONE, &syn1neg[row2], &ONE)
if f <= -MAX_EXP or f >= MAX_EXP:
continue
f = EXP_TABLE[<int>((f + MAX_EXP) * (EXP_TABLE_SIZE / MAX_EXP / 2))]
g = (label - f) * alpha
saxpy(&size, &g, &syn1neg[row2], &ONE, work, &ONE)
saxpy(&size, &g, &syn0[row1], &ONE, &syn1neg[row2], &ONE)
saxpy(&size, &ONEF, work, &ONE, &syn0[row1], &ONE)
return next_random
cdef unsigned long long fast_sentence2_sg_neg(
const int negative, np.uint32_t *table, unsigned long long table_len,
REAL_t *syn0, REAL_t *syn1neg, const int size, const np.uint32_t word_index,
const np.uint32_t word2_index, const REAL_t alpha, REAL_t *work,
unsigned long long next_random) nogil:
cdef long long a
cdef long long row1 = word2_index * size, row2
cdef unsigned long long modulo = 281474976710655ULL
cdef REAL_t f, g, label
cdef np.uint32_t target_index
cdef int d
for a in range(size):
work[a] = <REAL_t>0.0
for d in range(negative+1):
if d == 0:
target_index = word_index
label = ONEF
else:
target_index = table[(next_random >> 16) % table_len]
next_random = (next_random * <unsigned long long>25214903917ULL + 11) & modulo
if target_index == word_index:
continue
label = <REAL_t>0.0
row2 = target_index * size
f = <REAL_t>0.0
for a in range(size):
f += syn0[row1 + a] * syn1neg[row2 + a]
if f <= -MAX_EXP or f >= MAX_EXP:
continue
f = EXP_TABLE[<int>((f + MAX_EXP) * (EXP_TABLE_SIZE / MAX_EXP / 2))]
g = (label - f) * alpha
for a in range(size):
work[a] += g * syn1neg[row2 + a]
for a in range(size):
syn1neg[row2 + a] += g * syn0[row1 + a]
for a in range(size):
syn0[row1 + a] += work[a]
return next_random
cdef void fast_sentence0_cbow_hs(
const np.uint32_t *word_point, const np.uint8_t *word_code, int codelens[MAX_SENTENCE_LEN],
REAL_t *neu1, REAL_t *syn0, REAL_t *syn1, const int size,
const np.uint32_t indexes[MAX_SENTENCE_LEN], const REAL_t alpha, REAL_t *work,
int i, int j, int k, int cbow_mean) nogil:
cdef long long a, b
cdef long long row2
cdef REAL_t f, g, count, inv_count
cdef int m
memset(neu1, 0, size * cython.sizeof(REAL_t))
count = <REAL_t>0.0
for m in range(j, k):
if m == i or codelens[m] == 0:
continue
else:
count += ONEF
saxpy(&size, &ONEF, &syn0[indexes[m] * size], &ONE, neu1, &ONE)
if cbow_mean and count > (<REAL_t>0.5):
inv_count = ONEF/count
sscal(&size, &inv_count, neu1, &ONE)
memset(work, 0, size * cython.sizeof(REAL_t))
for b in range(codelens[i]):
row2 = word_point[b] * size
f = <REAL_t>dsdot(&size, neu1, &ONE, &syn1[row2], &ONE)
if f <= -MAX_EXP or f >= MAX_EXP:
continue
f = EXP_TABLE[<int>((f + MAX_EXP) * (EXP_TABLE_SIZE / MAX_EXP / 2))]
g = (1 - word_code[b] - f) * alpha
saxpy(&size, &g, &syn1[row2], &ONE, work, &ONE)
saxpy(&size, &g, neu1, &ONE, &syn1[row2], &ONE)
for m in range(j, k):
if m == i or codelens[m] == 0:
continue
else:
saxpy(&size, &ONEF, work, &ONE, &syn0[indexes[m] * size], &ONE)
cdef void fast_sentence1_cbow_hs(
const np.uint32_t *word_point, const np.uint8_t *word_code, int codelens[MAX_SENTENCE_LEN],
REAL_t *neu1, REAL_t *syn0, REAL_t *syn1, const int size,
const np.uint32_t indexes[MAX_SENTENCE_LEN], const REAL_t alpha, REAL_t *work,
int i, int j, int k, int cbow_mean) nogil:
cdef long long a, b
cdef long long row2
cdef REAL_t f, g, count, inv_count
cdef int m
memset(neu1, 0, size * cython.sizeof(REAL_t))
count = <REAL_t>0.0
for m in range(j, k):
if m == i or codelens[m] == 0:
continue
else:
count += ONEF
saxpy(&size, &ONEF, &syn0[indexes[m] * size], &ONE, neu1, &ONE)
if cbow_mean and count > (<REAL_t>0.5):
inv_count = ONEF/count
sscal(&size, &inv_count , neu1, &ONE)
memset(work, 0, size * cython.sizeof(REAL_t))
for b in range(codelens[i]):
row2 = word_point[b] * size
f = <REAL_t>sdot(&size, neu1, &ONE, &syn1[row2], &ONE)
if f <= -MAX_EXP or f >= MAX_EXP:
continue
f = EXP_TABLE[<int>((f + MAX_EXP) * (EXP_TABLE_SIZE / MAX_EXP / 2))]
g = (1 - word_code[b] - f) * alpha
saxpy(&size, &g, &syn1[row2], &ONE, work, &ONE)
saxpy(&size, &g, neu1, &ONE, &syn1[row2], &ONE)
for m in range(j, k):
if m == i or codelens[m] == 0:
continue
else:
saxpy(&size, &ONEF, work, &ONE, &syn0[indexes[m]*size], &ONE)
cdef void fast_sentence2_cbow_hs(
const np.uint32_t *word_point, const np.uint8_t *word_code, int codelens[MAX_SENTENCE_LEN],
REAL_t *neu1, REAL_t *syn0, REAL_t *syn1, const int size,
const np.uint32_t indexes[MAX_SENTENCE_LEN], const REAL_t alpha, REAL_t *work,
int i, int j, int k, int cbow_mean) nogil:
cdef long long a, b
cdef long long row2
cdef REAL_t f, g, count
cdef int m
for a in range(size):
neu1[a] = <REAL_t>0.0
count = <REAL_t>0.0
for m in range(j, k):
if m == i or codelens[m] == 0:
continue
else:
count += ONEF
for a in range(size):
neu1[a] += syn0[indexes[m] * size + a]
if cbow_mean and count > (<REAL_t>0.5):
for a in range(size):
neu1[a] /= count
for a in range(size):
work[a] = <REAL_t>0.0
for b in range(codelens[i]):
row2 = word_point[b] * size
f = <REAL_t>0.0
for a in range(size):
f += neu1[a] * syn1[row2 + a]
if f <= -MAX_EXP or f >= MAX_EXP:
continue
f = EXP_TABLE[<int>((f + MAX_EXP) * (EXP_TABLE_SIZE / MAX_EXP / 2))]
g = (1 - word_code[b] - f) * alpha
for a in range(size):
work[a] += g * syn1[row2 + a]
for a in range(size):
syn1[row2 + a] += g * neu1[a]
for m in range(j, k):
if m == i or codelens[m] == 0:
continue
else:
for a in range(size):
syn0[indexes[m] * size + a] += work[a]
cdef unsigned long long fast_sentence0_cbow_neg(
const int negative, np.uint32_t *table, unsigned long long table_len, int codelens[MAX_SENTENCE_LEN],
REAL_t *neu1, REAL_t *syn0, REAL_t *syn1neg, const int size,
np.uint32_t indexes[MAX_SENTENCE_LEN], const REAL_t alpha, REAL_t *work,
int i, int j, int k, int cbow_mean, unsigned long long next_random) nogil:
cdef long long a
cdef long long row2
cdef unsigned long long modulo = 281474976710655ULL
cdef REAL_t f, g, count, inv_count, label
cdef np.uint32_t target_index, word_index
cdef int d, m
word_index = indexes[i]
memset(neu1, 0, size * cython.sizeof(REAL_t))
count = <REAL_t>0.0
for m in range(j, k):
if m == i or codelens[m] == 0:
continue
else:
count += ONEF
saxpy(&size, &ONEF, &syn0[indexes[m] * size], &ONE, neu1, &ONE)
if cbow_mean and count > (<REAL_t>0.5):
inv_count = ONEF/count
sscal(&size, &inv_count, neu1, &ONE)
memset(work, 0, size * cython.sizeof(REAL_t))
for d in range(negative+1):
if d == 0:
target_index = word_index
label = ONEF
else:
target_index = table[(next_random >> 16) % table_len]
next_random = (next_random * <unsigned long long>25214903917ULL + 11) & modulo
if target_index == word_index:
continue
label = <REAL_t>0.0
row2 = target_index * size
f = <REAL_t>dsdot(&size, neu1, &ONE, &syn1neg[row2], &ONE)
if f <= -MAX_EXP or f >= MAX_EXP:
continue
f = EXP_TABLE[<int>((f + MAX_EXP) * (EXP_TABLE_SIZE / MAX_EXP / 2))]
g = (label - f) * alpha
saxpy(&size, &g, &syn1neg[row2], &ONE, work, &ONE)
saxpy(&size, &g, neu1, &ONE, &syn1neg[row2], &ONE)
for m in range(j,k):
if m == i or codelens[m] == 0:
continue
else:
saxpy(&size, &ONEF, work, &ONE, &syn0[indexes[m]*size], &ONE)
return next_random
cdef unsigned long long fast_sentence1_cbow_neg(
const int negative, np.uint32_t *table, unsigned long long table_len, int codelens[MAX_SENTENCE_LEN],
REAL_t *neu1, REAL_t *syn0, REAL_t *syn1neg, const int size,
np.uint32_t indexes[MAX_SENTENCE_LEN], const REAL_t alpha, REAL_t *work,
int i, int j, int k, int cbow_mean, unsigned long long next_random) nogil:
cdef long long a
cdef long long row2
cdef unsigned long long modulo = 281474976710655ULL
cdef REAL_t f, g, count, inv_count, label
cdef np.uint32_t target_index, word_index
cdef int d, m
word_index = indexes[i]
memset(neu1, 0, size * cython.sizeof(REAL_t))
count = <REAL_t>0.0
for m in range(j, k):
if m == i or codelens[m] == 0:
continue
else:
count += ONEF
saxpy(&size, &ONEF, &syn0[indexes[m] * size], &ONE, neu1, &ONE)
if cbow_mean and count > (<REAL_t>0.5):
inv_count = ONEF/count
sscal(&size, &inv_count, neu1, &ONE)
memset(work, 0, size * cython.sizeof(REAL_t))
for d in range(negative+1):
if d == 0:
target_index = word_index
label = ONEF
else:
target_index = table[(next_random >> 16) % table_len]
next_random = (next_random * <unsigned long long>25214903917ULL + 11) & modulo
if target_index == word_index:
continue
label = <REAL_t>0.0
row2 = target_index * size
f = <REAL_t>sdot(&size, neu1, &ONE, &syn1neg[row2], &ONE)
if f <= -MAX_EXP or f >= MAX_EXP:
continue
f = EXP_TABLE[<int>((f + MAX_EXP) * (EXP_TABLE_SIZE / MAX_EXP / 2))]
g = (label - f) * alpha
saxpy(&size, &g, &syn1neg[row2], &ONE, work, &ONE)
saxpy(&size, &g, neu1, &ONE, &syn1neg[row2], &ONE)
for m in range(j,k):
if m == i or codelens[m] == 0:
continue
else:
saxpy(&size, &ONEF, work, &ONE, &syn0[indexes[m]*size], &ONE)
return next_random
cdef unsigned long long fast_sentence2_cbow_neg(
const int negative, np.uint32_t *table, unsigned long long table_len, int codelens[MAX_SENTENCE_LEN],
REAL_t *neu1, REAL_t *syn0, REAL_t *syn1neg, const int size,
np.uint32_t indexes[MAX_SENTENCE_LEN], const REAL_t alpha, REAL_t *work,
int i, int j, int k, int cbow_mean, unsigned long long next_random) nogil:
cdef long long a
cdef long long row2
cdef unsigned long long modulo = 281474976710655ULL
cdef REAL_t f, g, count, inv_count, label
cdef np.uint32_t target_index, word_index
cdef int d, m
word_index = indexes[i]
for a in range(size):
neu1[a] = <REAL_t>0.0
count = <REAL_t>0.0
for m in range(j, k):
if m == i or codelens[m] == 0:
continue
else:
count += ONEF
for a in range(size):
neu1[a] += syn0[indexes[m] * size + a]
if cbow_mean and count > (<REAL_t>0.5):
for a in range(size):
neu1[a] /= count
for a in range(size):
work[a] = <REAL_t>0.0
for d in range(negative+1):
if d == 0:
target_index = word_index
label = ONEF
else:
target_index = table[(next_random >> 16) % table_len]
next_random = (next_random * <unsigned long long>25214903917ULL + 11) & modulo
if target_index == word_index:
continue
label = <REAL_t>0.0
row2 = target_index * size
f = <REAL_t>0.0
for a in range(size):
f += neu1[a] * syn1neg[row2 + a]
if f <= -MAX_EXP or f >= MAX_EXP:
continue
f = EXP_TABLE[<int>((f + MAX_EXP) * (EXP_TABLE_SIZE / MAX_EXP / 2))]
g = (label - f) * alpha
for a in range(size):
work[a] += g * syn1neg[row2 + a]
for a in range(size):
syn1neg[row2 + a] += g * neu1[a]
for m in range(j, k):
if m == i or codelens[m] == 0:
continue
else:
for a in range(size):
syn0[indexes[m] * size + a] += work[a]
return next_random
def train_sentence_sg(model, sentence, alpha, _work):
cdef int hs = model.hs
cdef int negative = model.negative
cdef REAL_t *syn0 = <REAL_t *>(np.PyArray_DATA(model.syn0))
cdef REAL_t *work
cdef REAL_t _alpha = alpha
cdef int size = model.layer1_size
cdef int codelens[MAX_SENTENCE_LEN]
cdef np.uint32_t indexes[MAX_SENTENCE_LEN]
cdef np.uint32_t reduced_windows[MAX_SENTENCE_LEN]
cdef int sentence_len
cdef int window = model.window
cdef int i, j, k
cdef long result = 0
# For hierarchical softmax
cdef REAL_t *syn1
cdef np.uint32_t *points[MAX_SENTENCE_LEN]
cdef np.uint8_t *codes[MAX_SENTENCE_LEN]
# For negative sampling
cdef REAL_t *syn1neg
cdef np.uint32_t *table
cdef unsigned long long table_len
cdef unsigned long long next_random
if hs:
syn1 = <REAL_t *>(np.PyArray_DATA(model.syn1))
if negative:
syn1neg = <REAL_t *>(np.PyArray_DATA(model.syn1neg))
table = <np.uint32_t *>(np.PyArray_DATA(model.table))
table_len = len(model.table)
next_random = (2**24)*np.random.randint(0,2**24) + np.random.randint(0,2**24)
# convert Python structures to primitive types, so we can release the GIL
work = <REAL_t *>np.PyArray_DATA(_work)
sentence_len = <int>min(MAX_SENTENCE_LEN, len(sentence))
for i in range(sentence_len):
word = sentence[i]
if word is None:
codelens[i] = 0
else:
indexes[i] = word.index
reduced_windows[i] = np.random.randint(window)
if hs:
codelens[i] = <int>len(word.code)
codes[i] = <np.uint8_t *>np.PyArray_DATA(word.code)
points[i] = <np.uint32_t *>np.PyArray_DATA(word.point)
else:
codelens[i] = 1
result += 1
# release GIL & train on the sentence
with nogil:
for i in range(sentence_len):
if codelens[i] == 0:
continue
j = i - window + reduced_windows[i]
if j < 0:
j = 0
k = i + window + 1 - reduced_windows[i]
if k > sentence_len:
k = sentence_len
for j in range(j, k):
if j == i or codelens[j] == 0:
continue
if hs:
fast_sentence_sg_hs(points[i], codes[i], codelens[i], syn0, syn1, size, indexes[j], _alpha, work)
if negative:
next_random = fast_sentence_sg_neg(negative, table, table_len, syn0, syn1neg, size, indexes[i], indexes[j], _alpha, work, next_random)
return result
def train_sentence_cbow(model, sentence, alpha, _work, _neu1):
cdef int hs = model.hs
cdef int negative = model.negative
cdef int cbow_mean = model.cbow_mean
cdef REAL_t *syn0 = <REAL_t *>(np.PyArray_DATA(model.syn0))
cdef REAL_t *work
cdef REAL_t *neu1
cdef REAL_t _alpha = alpha
cdef int size = model.layer1_size
cdef int codelens[MAX_SENTENCE_LEN]
cdef np.uint32_t indexes[MAX_SENTENCE_LEN]
cdef np.uint32_t reduced_windows[MAX_SENTENCE_LEN]
cdef int sentence_len
cdef int window = model.window
cdef int i, j, k
cdef long result = 0
# For hierarchical softmax
cdef REAL_t *syn1
cdef np.uint32_t *points[MAX_SENTENCE_LEN]
cdef np.uint8_t *codes[MAX_SENTENCE_LEN]
# For negative sampling
cdef REAL_t *syn1neg
cdef np.uint32_t *table
cdef unsigned long long table_len
cdef unsigned long long next_random
if hs:
syn1 = <REAL_t *>(np.PyArray_DATA(model.syn1))
if negative:
syn1neg = <REAL_t *>(np.PyArray_DATA(model.syn1neg))
table = <np.uint32_t *>(np.PyArray_DATA(model.table))
table_len = len(model.table)
next_random = (2**24)*np.random.randint(0,2**24) + np.random.randint(0,2**24)
# convert Python structures to primitive types, so we can release the GIL
work = <REAL_t *>np.PyArray_DATA(_work)
neu1 = <REAL_t *>np.PyArray_DATA(_neu1)
sentence_len = <int>min(MAX_SENTENCE_LEN, len(sentence))
for i in range(sentence_len):
word = sentence[i]
if word is None:
codelens[i] = 0
else:
indexes[i] = word.index
reduced_windows[i] = np.random.randint(window)
if hs:
codelens[i] = <int>len(word.code)
codes[i] = <np.uint8_t *>np.PyArray_DATA(word.code)
points[i] = <np.uint32_t *>np.PyArray_DATA(word.point)
else:
codelens[i] = 1
result += 1
# release GIL & train on the sentence
with nogil:
for i in range(sentence_len):
if codelens[i] == 0:
continue
j = i - window + reduced_windows[i]
if j < 0:
j = 0
k = i + window + 1 - reduced_windows[i]
if k > sentence_len:
k = sentence_len
if hs:
fast_sentence_cbow_hs(points[i], codes[i], codelens, neu1, syn0, syn1, size, indexes, _alpha, work, i, j, k, cbow_mean)
if negative:
next_random = fast_sentence_cbow_neg(negative, table, table_len, codelens, neu1, syn0, syn1neg, size, indexes, _alpha, work, i, j, k, cbow_mean, next_random)
return result
def init():
"""
Precompute function `sigmoid(x) = 1 / (1 + exp(-x))`, for x values discretized
into table EXP_TABLE.
"""
global fast_sentence_sg_hs
global fast_sentence_sg_neg
global fast_sentence_cbow_hs
global fast_sentence_cbow_neg
cdef int i
cdef float *x = [<float>10.0]
cdef float *y = [<float>0.01]
cdef float expected = <float>0.1
cdef int size = 1
cdef double d_res
cdef float *p_res
# build the sigmoid table
for i in range(EXP_TABLE_SIZE):
EXP_TABLE[i] = <REAL_t>exp((i / <REAL_t>EXP_TABLE_SIZE * 2 - 1) * MAX_EXP)
EXP_TABLE[i] = <REAL_t>(EXP_TABLE[i] / (EXP_TABLE[i] + 1))
# check whether sdot returns double or float
d_res = dsdot(&size, x, &ONE, y, &ONE)
p_res = <float *>&d_res
if (abs(d_res - expected) < 0.0001):
fast_sentence_sg_hs = fast_sentence0_sg_hs
fast_sentence_sg_neg = fast_sentence0_sg_neg
fast_sentence_cbow_hs = fast_sentence0_cbow_hs
fast_sentence_cbow_neg = fast_sentence0_cbow_neg
return 0 # double
elif (abs(p_res[0] - expected) < 0.0001):
fast_sentence_sg_hs = fast_sentence1_sg_hs
fast_sentence_sg_neg = fast_sentence1_sg_neg
fast_sentence_cbow_hs = fast_sentence1_cbow_hs
fast_sentence_cbow_neg = fast_sentence1_cbow_neg
return 1 # float
else:
# neither => use cython loops, no BLAS
# actually, the BLAS is so messed up we'll probably have segfaulted above and never even reach here
fast_sentence_sg_hs = fast_sentence2_sg_hs
fast_sentence_sg_neg = fast_sentence2_sg_neg
fast_sentence_cbow_hs = fast_sentence2_cbow_hs
fast_sentence_cbow_neg = fast_sentence2_cbow_neg
return 2
FAST_VERSION = init() # initialize the module