-
Notifications
You must be signed in to change notification settings - Fork 13
/
determining_ploidy_2.Rmd
407 lines (298 loc) · 12.1 KB
/
determining_ploidy_2.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
---
title: "Determining ploidy 2"
---
```{r global_options, include=FALSE}
knitr::opts_chunk$set(fig.align = 'center')
knitr::opts_chunk$set(fig.width = 8)
knitr::opts_chunk$set(fig.height = 8)
```
Previously we showed how to create histograms based on the ratio of alleles observed at heterozygous positions.
These histograms may present desireable perspectives when a constant ploidy is expected.
Investigators interested in whether there is variation in copy number along a chromosome may require a more detailed perspective.
Here we present a perspective of copy number variation along the length of a chromosome.
Instead of using all of the data each chromosome can be divided into windows of user specified width.
For each of these windows a numerical summary of where the peak would be is made.
Creating a numerical summary is important because when we move to genome scale data it is easy to generate more windows than we can manually curate.
We can visualize some of this data, but the numerical summary will allow us to process many windows over many samples.
## Input data
Data import is performed similar to other examples.
```{r}
# Load libraries
library(vcfR)
library(pinfsc50)
# Determine file locations
vcf_file <- system.file("extdata", "pinf_sc50.vcf.gz",
package = "pinfsc50")
# Read data into memory
vcf <- read.vcfR(vcf_file, verbose = FALSE)
vcf
```
## Depth filtering
We'll also filter on depth by removng high and low coverage variants.
The thresholds for this filtering will be determined by quantiles.
Researchers may want to explore other methods available in R (e.g., fit a distribution, mixture models, etc.).
First we extract the alleles and create frequencies
```{r}
ad <- extract.gt(vcf, element = 'AD')
allele1 <- masplit(ad, record = 1)
allele2 <- masplit(ad, record = 2)
ad1 <- allele1 / (allele1 + allele2)
ad2 <- allele2 / (allele1 + allele2)
```
We create thresholds based on the most abundant allele as follows.
```{r}
dp <- allele1
#sums <- apply(dp, MARGIN=2, quantile, probs=c(0.15, 0.95), na.rm=TRUE)
sums <- apply(dp, MARGIN=2, quantile, probs=c(0.1, 0.9), na.rm=TRUE)
par(mfrow=c(4,3))
par(mar=c(2,2,1,1))
par(oma=c(1,1,0,0))
for(i in 1:12){
hist(allele1[,i], breaks = seq(0,1e3,by=1), xlim=c(0,100), col=8, main="", xlab="", ylab="")
title(main = colnames(allele1)[i])
abline(v=sums[,i], col=2)
}
title(xlab = "Depth", line=0, outer = TRUE, font=2)
title(ylab = "Count", line=0, outer = TRUE, font=2)
par(mar=c(5,4,4,2))
par(oma=c(0,0,0,0))
```
We performa similar operation for the second most abundant allele.
```{r}
par(mfrow=c(4,3))
par(mar=c(2,2,1,1))
par(oma=c(1,1,0,0))
for(i in 1:12){
tmp <- allele2[,i]
tmp <- tmp[ tmp > 0 ]
hist(tmp, breaks = seq(0,1e3,by=1), xlim=c(0,100),
# ylim=c(0,1000),
col=8, main="", xlab="", ylab="")
title(main = colnames(allele1)[i])
}
title(xlab = "Depth", line=0, outer = TRUE, font=2)
title(ylab = "Count", line=0, outer = TRUE, font=2)
par(mfrow=c(1,1))
par(mar=c(5,4,4,2))
par(oma=c(0,0,0,0))
```
## Find peaks of density
In order to avoid assumptions about the distribution of the allele balance ratios we employ a non-parametric method.
The data are binned into bins of user specified widths and the bin with the highest density is chosen as the frequency.
This is our numerical summary of our peak density and will be retained in a matrix of samples and windows.
```{r find_peaks}
# Filter on depth quantiles.
sums <- apply(allele1, MARGIN=2, quantile, probs=c(0.1, 0.9), na.rm=TRUE)
# Allele 1
dp2 <- sweep(allele1, MARGIN=2, FUN = "-", sums[1,])
#allele1[dp2 < 0] <- NA
vcf@gt[,-1][ dp2 < 0 & !is.na(vcf@gt[,-1]) ] <- NA
dp2 <- sweep(allele1, MARGIN=2, FUN = "-", sums[2,])
#allele1[dp2 > 0] <- NA
vcf@gt[,-1][dp2 > 0] <- NA
# Allele 2
dp2 <- sweep(allele2, MARGIN=2, FUN = "-", sums[1,])
vcf@gt[,-1][ dp2 < 0 & !is.na(vcf@gt[,-1]) ] <- NA
dp2 <- sweep(allele2, MARGIN=2, FUN = "-", sums[2,])
vcf@gt[,-1][dp2 > 0] <- NA
# Censor homozygotes.
gt <- extract.gt(vcf, element = 'GT')
hets <- is_het(gt)
is.na( vcf@gt[,-1][ !hets ] ) <- TRUE
# Extract allele depths
ad <- extract.gt(vcf, element = 'AD')
allele1 <- masplit(ad, record = 1)
allele2 <- masplit(ad, record = 2)
ad1 <- allele1 / (allele1 + allele2)
ad2 <- allele2 / (allele1 + allele2)
# Parameters
#winsize <- 1e5
#
winsize <- 2e5
#bin_width <- 0.1
#bin_width <- 0.05
#bin_width <- 0.025
#
bin_width <- 0.02
#bin_width <- 0.01
# Find peaks
freq1 <- ad1/(ad1+ad2)
freq2 <- ad2/(ad1+ad2)
myPeaks1 <- freq_peak(freq1, getPOS(vcf), winsize = winsize, bin_width = bin_width)
#myCounts1 <- freq_peak(freq1, getPOS(vcf), winsize = winsize, bin_width = bin_width, count = TRUE)
is.na(myPeaks1$peaks[myPeaks1$counts < 20]) <- TRUE
myPeaks2 <- freq_peak(freq2, getPOS(vcf), winsize = winsize, bin_width = bin_width, lhs = FALSE)
#myCounts2 <- freq_peak(freq2, getPOS(vcf), winsize = winsize, bin_width = bin_width, count = TRUE)
is.na(myPeaks2$peaks[myPeaks2$counts < 20]) <- TRUE
```
As a proof of concep we can visualize plots of the major allele with a red horizontal line at our predicted peak.
We repeat this for the minor allele.
```{r}
par(mfrow=c(4,4))
par(mar=c(2,2,1,1))
par(oma=c(1,1,0,0))
mySample <- "BL2009P4_us23"
for(i in 1:4){
hist(freq1[ myPeaks1$wins[i,'START_row']:myPeaks1$wins[i,'END_row'], mySample ],
breaks = seq(0,1,by=bin_width), xlim=c(0,1), col=8, main = "", xaxt='n')
axis(side=1, at=c(0,0.25,0.333,0.5,0.666,0.75,1),
labels=c(0,'1/4','1/3','1/2','2/3','3/4',1), las=1)
abline(v=myPeaks1$peaks[i,mySample], col=2)
if(i==2){ title(main=mySample) }
}
mySample <- "DDR7602"
for(i in 1:4){
hist(freq1[ myPeaks1$wins[i,'START_row']:myPeaks1$wins[i,'END_row'], mySample ],
breaks = seq(0,1,by=bin_width), xlim=c(0,1), col=8, main = "", xaxt='n')
axis(side=1, at=c(0,0.25,0.333,0.5,0.666,0.75,1),
labels=c(0,'1/4','1/3','1/2','2/3','3/4',1), las=1)
abline(v=myPeaks1$peaks[i,mySample], col=2)
if(i==2){ title(main=mySample) }
}
mySample <- "IN2009T1_us22"
for(i in 1:4){
hist(freq1[ myPeaks1$wins[i,'START_row']:myPeaks1$wins[i,'END_row'], mySample ],
breaks = seq(0,1,by=bin_width), xlim=c(0,1), col=8, main = "", xaxt='n')
axis(side=1, at=c(0,0.25,0.333,0.5,0.666,0.75,1),
labels=c(0,'1/4','1/3','1/2','2/3','3/4',1), las=1)
abline(v=myPeaks1$peaks[i,mySample], col=2)
if(i==2){ title(main=mySample) }
}
mySample <- "P17777us22"
for(i in 1:4){
hist(freq1[ myPeaks1$wins[i,'START_row']:myPeaks1$wins[i,'END_row'], mySample ],
breaks = seq(0,1,by=bin_width), xlim=c(0,1), col=8, main = "", xaxt='n')
axis(side=1, at=c(0,0.25,0.333,0.5,0.666,0.75,1),
labels=c(0,'1/4','1/3','1/2','2/3','3/4',1), las=1)
abline(v=myPeaks1$peaks[i,mySample], col=2)
if(i==2){ title(main=mySample) }
}
par(mfrow=c(1,1))
par(mar=c(5,4,4,2))
par(oma=c(0,0,0,0))
```
Second most abundant allele.
```{r}
par(mfrow=c(4,4))
par(mar=c(2,2,1,1))
par(oma=c(1,1,0,0))
mySample <- "BL2009P4_us23"
for(i in 1:4){
hist(freq2[ myPeaks1$wins[i,'START_row']:myPeaks1$wins[i,'END_row'], mySample ],
breaks = seq(0,1,by=bin_width), xlim=c(0,1), col=8, main = "", xaxt='n')
axis(side=1, at=c(0,0.25,0.333,0.5,0.666,0.75,1),
labels=c(0,'1/4','1/3','1/2','2/3','3/4',1), las=1)
abline(v=myPeaks2$peaks[i,mySample], col=2)
if(i==2){ title(main=mySample) }
}
mySample <- "DDR7602"
for(i in 1:4){
hist(freq2[ myPeaks1$wins[i,'START_row']:myPeaks1$wins[i,'END_row'], mySample ],
breaks = seq(0,1,by=bin_width), xlim=c(0,1), col=8, main = "", xaxt='n')
axis(side=1, at=c(0,0.25,0.333,0.5,0.666,0.75,1),
labels=c(0,'1/4','1/3','1/2','2/3','3/4',1), las=1)
abline(v=myPeaks2$peaks[i,mySample], col=2)
if(i==2){ title(main=mySample) }
}
mySample <- "IN2009T1_us22"
for(i in 1:4){
hist(freq2[ myPeaks1$wins[i,'START_row']:myPeaks1$wins[i,'END_row'], mySample ],
breaks = seq(0,1,by=bin_width), xlim=c(0,1), col=8, main = "", xaxt='n')
axis(side=1, at=c(0,0.25,0.333,0.5,0.666,0.75,1),
labels=c(0,'1/4','1/3','1/2','2/3','3/4',1), las=1)
abline(v=myPeaks2$peaks[i,mySample], col=2)
if(i==2){ title(main=mySample) }
}
mySample <- "P17777us22"
for(i in 1:4){
hist(freq2[ myPeaks2$wins[i,'START_row']:myPeaks1$wins[i,'END_row'], mySample ],
breaks = seq(0,1,by=bin_width), xlim=c(0,1), col=8, main = "", xaxt='n')
axis(side=1, at=c(0,0.25,0.333,0.5,0.666,0.75,1),
labels=c(0,'1/4','1/3','1/2','2/3','3/4',1), las=1)
abline(v=myPeaks2$peaks[i,mySample], col=2)
if(i==2){ title(main=mySample) }
}
par(mfrow=c(1,1))
par(mar=c(5,4,4,2))
par(oma=c(0,0,0,0))
```
## Visualization
There are a number of ways to visualize this data.
One way is to turn our histogram on its side, as a form of marginal summary, and plot our window summaries.
```{r, fig.height=4}
i <- 2
layout(matrix(1:2, nrow=1), widths = c(4,1))
par(mar=c(5,4,4,0))
mySample <- colnames(freq1)[i]
plot(getPOS(vcf), freq1[,mySample], ylim=c(0,1), type="n", yaxt='n',
main = mySample, xlab = "POS", ylab = "Allele balance")
axis(side=2, at=c(0,0.25,0.333,0.5,0.666,0.75,1),
labels=c(0,'1/4','1/3','1/2','2/3','3/4',1), las=1)
abline(h=c(0.25,0.333,0.5,0.666,0.75), col=8)
points(getPOS(vcf), freq1[,mySample], pch = 20, col= "#A6CEE344")
points(getPOS(vcf), freq2[,mySample], pch = 20, col= "#1F78B444")
segments(x0=myPeaks1$wins[,'START_pos'], y0=myPeaks1$peaks[,mySample],
x1=myPeaks1$wins[,'END_pos'], lwd=3)
segments(x0=myPeaks1$wins[,'START_pos'], y0=myPeaks2$peaks[,mySample],
x1=myPeaks1$wins[,'END_pos'], lwd=3)
bp1 <- hist(freq1[,mySample], breaks = seq(0,1,by=bin_width), plot = FALSE)
bp2 <- hist(freq2[,mySample], breaks = seq(0,1,by=bin_width), plot = FALSE)
par(mar=c(5,1,4,2))
barplot(height=bp1$counts, width=0.02, space = 0, horiz = T, add = FALSE, col="#A6CEE3")
barplot(height=bp2$counts, width=0.02, space = 0, horiz = T, add = TRUE, col="#1F78B4")
par(mar=c(5,4,4,2))
par(mfrow=c(1,1))
```
Once we determine how to make one plot we can loop over all the samples.
```{r, fig.height=4, echo=FALSE}
for( i in 1:ncol(freq1) ){
#i <- 18
layout(matrix(1:2, nrow=1), widths = c(4,1))
par(mar=c(5,4,4,0))
mySample <- colnames(freq1)[i]
plot(getPOS(vcf), freq1[,mySample], ylim=c(0,1), type="n", yaxt='n',
main = mySample, xlab = "POS", ylab = "Allele balance")
axis(side=2, at=c(0,0.25,0.333,0.5,0.666,0.75,1),
labels=c(0,'1/4','1/3','1/2','2/3','3/4',1), las=1)
abline(h=c(0.25,0.333,0.5,0.666,0.75), col=8)
points(getPOS(vcf), freq1[,mySample], pch = 20, col= "#A6CEE344")
points(getPOS(vcf), freq2[,mySample], pch = 20, col= "#1F78B444")
segments(x0=myPeaks1$wins[,'START_pos'], y0=myPeaks1$peaks[,mySample],
x1=myPeaks1$wins[,'END_pos'], lwd=3)
segments(x0=myPeaks1$wins[,'START_pos'], y0=myPeaks2$peaks[,mySample],
x1=myPeaks1$wins[,'END_pos'], lwd=3)
bp1 <- hist(freq1[,mySample], breaks = seq(0,1,by=bin_width), plot = FALSE)
bp2 <- hist(freq2[,mySample], breaks = seq(0,1,by=bin_width), plot = FALSE)
par(mar=c(5,1,4,2))
barplot(height=bp1$counts, width=0.02, space = 0, horiz = T, add = FALSE, col="#A6CEE3")
barplot(height=bp2$counts, width=0.02, space = 0, horiz = T, add = TRUE, col="#1F78B4")
par(mar=c(5,4,4,2))
par(mfrow=c(1,1))
}
```
We can also create a matrix of plots.
```{r}
par(mfrow=c(4,3))
par(mar=c(2,2,1,1))
par(oma=c(1,1,0,0))
for(i in 1:12){
mySample <- colnames(freq1)[i]
plot(getPOS(vcf), freq1[,mySample], ylim=c(0,1), type="n", yaxt='n',
main = mySample, xlab = "POS", ylab = "Allele balance")
axis(side=2, at=c(0,0.25,0.333,0.5,0.666,0.75,1),
labels=c(0,'1/4','1/3','1/2','2/3','3/4',1), las=1)
abline(h=c(0.25,0.333,0.5,0.666,0.75), col=8)
points(getPOS(vcf), freq1[,mySample], pch = 20, col= "#A6CEE344")
points(getPOS(vcf), freq2[,mySample], pch = 20, col= "#1F78B444")
segments(x0=myPeaks1$wins[,'START_pos'], y0=myPeaks1$peaks[,mySample],
x1=myPeaks1$wins[,'END_pos'], lwd=3)
segments(x0=myPeaks1$wins[,'START_pos'], y0=myPeaks2$peaks[,mySample],
x1=myPeaks1$wins[,'END_pos'], lwd=3)
}
par(mfrow=c(1,1))
par(mar=c(5,4,4,2))
par(oma=c(0,0,0,0))
```
We now have a way to create windows of allele balance ratios.
We also have several ways to visualize this data.
Perhaps most importantly, we have a numerical summary of the peak in each window so we can loop over all of the chromosomes in our reference.