forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path_meta_registrations.py
740 lines (621 loc) · 23.8 KB
/
_meta_registrations.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
from typing import List, Optional, Union
import torch
import torch._prims_common as utils
from torch import Tensor
from torch._prims_common import (
check,
corresponding_complex_dtype,
corresponding_real_dtype,
elementwise_dtypes,
ELEMENTWISE_TYPE_PROMOTION_KIND,
)
from torch._prims_common.wrappers import out_wrapper
from torch._refs import _broadcast_shapes
from torch.utils._pytree import tree_map
aten = torch.ops.aten
meta_lib = torch.library.Library("aten", "IMPL", "Meta")
meta_table = {}
def register_meta(op, register_dispatcher=True):
def wrapper(f):
def add_func(op):
meta_table[op] = f
if register_dispatcher:
name = (
op.__name__
if op._overloadname != "default"
else op.overloadpacket.__name__
)
meta_lib.impl(name, f)
tree_map(add_func, op)
return f
return wrapper
def toRealValueType(dtype):
from_complex = {
torch.complex32: torch.half,
torch.cfloat: torch.float,
torch.cdouble: torch.double,
}
return from_complex.get(dtype, dtype)
@register_meta(aten._fft_c2c.default)
def meta_fft_c2c(self, dim, normalization, forward):
assert self.dtype.is_complex
return self.new_empty(self.size())
@register_meta(aten._fft_r2c.default)
def meta_fft_r2c(self, dim, normalization, onesided):
assert self.dtype.is_floating_point
output_sizes = list(self.size())
if onesided:
last_dim = dim[-1]
last_dim_halfsize = (output_sizes[last_dim] // 2) + 1
output_sizes[last_dim] = last_dim_halfsize
return self.new_empty(
output_sizes, dtype=utils.corresponding_complex_dtype(self.dtype)
)
@register_meta(aten.randperm.generator_out)
def meta_randperm(n, *, generator=None, out):
assert out.ndim == 1 and out.size(0) == n
return out
@register_meta([aten._fft_c2r.default, aten._fft_c2r.out])
@out_wrapper()
def meta_fft_c2r(self, dim, normalization, lastdim):
assert self.dtype.is_complex
output_sizes = list(self.size())
output_sizes[dim[-1]] = lastdim
return self.new_empty(output_sizes, dtype=toRealValueType(self.dtype))
# Implementations below are taken from https://github.com/albanD/subclass_zoo/blob/main/python_meta_tensor.py
@register_meta(aten.index_select.default)
def meta_index_select(self, dim, index):
result_size = list(self.size())
if self.dim() > 0:
result_size[dim] = index.numel()
return self.new_empty(result_size)
@register_meta(aten.index_select.out)
def meta_index_select_out(self, dim, index, out):
torch._resize_output_(out, self.size(), self.device)
return out.copy_(torch.index_select(self, dim, index))
@register_meta([aten.max.default, aten.min.default])
def meta_max(self):
return self.new_empty(())
@register_meta(aten.angle.default)
def meta_angle(self):
if self.is_complex():
result_dtype = corresponding_real_dtype(self.dtype)
else:
_, result_dtype = elementwise_dtypes(
self, type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT
)
return self.new_empty(self.size(), dtype=result_dtype)
@register_meta(aten.angle.out)
def meta_angle_out(self, out):
torch._resize_output_(out, self.size(), self.device)
return out.copy_(torch.angle(self))
def squareCheckInputs(self, f_name):
assert (
self.dim() >= 2
), f"{f_name}: The input tensor must have at least 2 dimensions."
assert self.size(-1) == self.size(
-2
), f"{f_name}: A must be batches of square matrices, but they are {self.size(-2)} by {self.size(-1)} matrices"
def checkUplo(uplo: str):
uplo_uppercase = uplo.upper()
assert (
len(uplo) == 1 and uplo_uppercase == "U" or uplo_uppercase == "L"
), f"Expected UPLO argument to be 'L' or 'U', but got {uplo}"
# @register_meta(aten.linalg_eigh.default)
def meta_linalg_eigh(self, uplo="L"):
squareCheckInputs(self, "linalg_eigh")
checkUplo(uplo)
real_dtype = toRealValueType(self.dtype)
assert self.dim() >= 2
values = self.new_empty(self.shape, dtype=real_dtype)
values.transpose_(-2, -1)
vectors = self.new_empty(self.shape[:-1])
return (values, vectors)
@register_meta(aten.reflection_pad2d.default)
def meta_pad2d(self, padding):
valid_dims = self.size(1) != 0 and self.size(2) != 0
check(
(self.ndim == 3 and valid_dims)
or (self.ndim == 4 and valid_dims and self.size(3) != 0),
lambda: f"3D or 4D (batch mode) tensor expected for input, but got: {self}",
)
if self.ndim == 4:
nbatch, nplane, input_h, input_w = self.shape
else:
nbatch = 1
nplane, input_h, input_w = self.shape
pad_l, pad_r, pad_t, pad_b = padding
output_h = input_h + pad_t + pad_b
output_w = input_w + pad_l + pad_r
if self.ndim == 3:
return self.new_empty((nplane, output_h, output_w))
else:
return self.new_empty((nbatch, nplane, output_h, output_w))
def dot_check(self, other):
check(
self.dim() == 1 and other.dim() == 1,
lambda: f"1D tensors expected, but got {self.dim()}D and {other.dim()}D tensors",
)
@register_meta(aten.dot.default)
def meta_dot(self, tensor):
dot_check(self, tensor)
return self.new_empty(())
def _compute_reduction_shape(self, dims, keepdim):
if keepdim:
return tuple(self.shape[i] if i not in dims else 1 for i in range(self.ndim))
return utils.compute_reduction_output_shape(self.shape, dims)
@register_meta(aten.inverse.default)
def meta_inverse(self):
# Bug: https://github.com/pytorch/pytorch/issues/77498
if self.numel() == 0:
return torch.empty_like(self)
r = self.new_empty(self.shape)
r.transpose_(-2, -1)
return r
@torch.library.impl(meta_lib, "bernoulli.out")
def meta_bernoulli(self, *, generator=None, out):
torch._resize_output_(out, self.size(), self.device)
return out
@register_meta(aten.convolution.default)
def meta_conv(
input_tensor: torch.Tensor,
weight: torch.Tensor,
bias: torch.Tensor,
stride: List[int],
padding: List[int],
dilation: List[int],
is_transposed: bool,
output_padding: List[int],
groups: int,
):
def _formula(ln: int, p: int, d: int, k: int, s: int) -> int:
"""
Formula to apply to calculate the length of some dimension of the output
See: https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html
Args:
ln: length of the dimension
p: padding in that dim
d: dilation in that dim
k: kernel size in that dim
s: stride in that dim
Returns:
The output length
"""
return (ln + 2 * p - d * (k - 1) - 1) // s + 1
def _formula_transposed(ln: int, p: int, d: int, k: int, s: int, op: int) -> int:
"""
Formula to apply to calculate the length of some dimension of the output
if transposed convolution is used.
See: https://pytorch.org/docs/stable/generated/torch.nn.ConvTranspose2d.html
Args:
ln: length of the dimension
p: padding in that dim
d: dilation in that dim
k: kernel size in that dim
s: stride in that dim
op: output padding in that dim
Returns:
The output length
"""
return (ln - 1) * s - 2 * p + d * (k - 1) + op + 1
def calc_conv_nd_return_shape(
dims: torch.Size,
kernel_size: torch.Size,
stride: Union[List[int], int],
padding: Union[List[int], int],
dilation: Union[List[int], int],
output_padding: Optional[Union[List[int], int]] = None,
):
ret_shape = []
if isinstance(stride, int):
stride = [stride] * len(dims)
elif len(stride) == 1:
stride = [stride[0]] * len(dims)
if isinstance(padding, int):
padding = [padding] * len(dims)
elif len(padding) == 1:
padding = [padding[0]] * len(dims)
if isinstance(dilation, int):
dilation = [dilation] * len(dims)
elif len(dilation) == 1:
dilation = [dilation[0]] * len(dims)
output_padding_list: Optional[List[int]] = None
if output_padding:
if isinstance(output_padding, int):
output_padding_list = [output_padding] * len(dims)
elif len(output_padding) == 1:
output_padding_list = [output_padding[0]] * len(dims)
else:
output_padding_list = output_padding
for i in range(len(dims)):
# If output_padding is present, we are dealing with a transposed convolution
if output_padding_list:
ret_shape.append(
_formula_transposed(
dims[i],
padding[i],
dilation[i],
kernel_size[i],
stride[i],
output_padding_list[i],
)
)
else:
ret_shape.append(
_formula(
dims[i], padding[i], dilation[i], kernel_size[i], stride[i]
)
)
return ret_shape
def pick_memory_format():
if input_tensor.is_contiguous(memory_format=torch.channels_last):
return torch.channels_last
elif input_tensor.is_contiguous(memory_format=torch.contiguous_format):
return torch.contiguous_format
elif input_tensor.is_contiguous(memory_format=torch.preserve_format):
return torch.preserve_format
kernel_size = weight.shape[2:]
dims = input_tensor.shape[2:]
if is_transposed:
out_channels = groups * weight.shape[1]
shape_out = calc_conv_nd_return_shape(
dims,
kernel_size,
stride,
padding,
dilation,
output_padding,
)
else:
out_channels = weight.shape[0]
if weight.shape[1] != input_tensor.shape[1] / groups:
raise RuntimeError("Invalid channel dimensions")
shape_out = calc_conv_nd_return_shape(
dims, kernel_size, stride, padding, dilation
)
out = input_tensor.new_empty((input_tensor.shape[0], out_channels, *shape_out))
mem_fmt = pick_memory_format()
out = out.to(memory_format=mem_fmt) # type: ignore[call-overload]
return out
@register_meta(aten._adaptive_avg_pool2d.default)
def meta_adaptive_avg_pool2d(self, output_size):
check(
self.ndim == 3 or self.ndim == 4,
lambda: f"Expected 3D or 4D tensor, but got {self.shape}",
)
return self.new_empty(self.shape[:-2] + tuple(output_size))
@register_meta(aten._adaptive_avg_pool3d.default)
def meta_adaptive_avg_pool3d(self, output_size):
check(
self.ndim == 4 or self.ndim == 5,
lambda: f"Expected 4D or 5D tensor, but got {self.shape}",
)
return self.new_empty(self.shape[:-3] + tuple(output_size))
@register_meta(aten.repeat_interleave.Tensor)
def meta_repeat_interleave_Tensor(repeats, output_size=None):
if output_size is None:
raise RuntimeError("cannot repeat_interleave a meta tensor without output_size")
return repeats.new_empty(output_size)
@torch.library.impl(meta_lib, "complex")
@torch.library.impl(meta_lib, "complex.out")
@out_wrapper()
def meta_complex(real, imag):
assert real.dtype.is_floating_point
assert imag.dtype.is_floating_point
out_shape = _broadcast_shapes(real.shape, imag.shape)
return real.new_empty(out_shape, dtype=corresponding_complex_dtype(real.dtype))
@torch.library.impl(meta_lib, "vdot")
def vdot(self, other):
if not self.is_complex:
return torch.dot(self, other)
if self.is_conj():
if other.is_conj():
return torch.vdot(other.conj(), self.conj())
else:
return torch.dot(self.conj(), other)
elif other.is_conj():
return torch.dot(self, other.conj()).conj()
dot_check(self, other)
return self.new_empty(())
# Leaving this function around because a python implementation
# of indexing shape inference is useful,
# but not registering it to the dispatcher because we already
# get shape inference through structured kernels
@register_meta(aten.index.Tensor, register_dispatcher=False)
def meta_index_Tensor(self, indices):
check(indices, lambda: "at least one index must be provided")
# aten::index is the internal advanced indexing implementation
# checkIndexTensorTypes and expandTensors
result: List[Optional[Tensor]] = []
for i, index in enumerate(indices):
if index is not None:
check(
index.dtype in [torch.long, torch.int8, torch.bool],
lambda: "tensors used as indices must be long, byte or bool tensors",
)
if index.dtype in [torch.int8, torch.bool]:
nonzero = index.nonzero()
k = len(result)
check(
k + index.ndim <= self.ndim,
lambda: f"too many indices for tensor of dimension {self.ndim}",
IndexError,
)
for j in range(index.ndim):
check(
index.shape[j] == self.shape[k + j],
lambda: f"The shape of the mask {index.shape} at index {i} "
f"does not match the shape of the indexed tensor {self.shape} at index {k + j}",
IndexError,
)
result.append(nonzero.select(1, j))
else:
result.append(index)
else:
result.append(index)
indices = result
check(
len(indices) <= self.ndim,
lambda: f"too many indices for tensor of dimension {self.ndim} (got {len(indices)})",
)
# expand_outplace
import torch._refs as refs # avoid import cycle in mypy
indices = list(refs._maybe_broadcast(*indices))
# add missing null tensors
while len(indices) < self.ndim:
indices.append(None)
# hasContiguousSubspace
# true if all non-null tensors are adjacent
# See:
# https://numpy.org/doc/stable/user/basics.indexing.html#combining-advanced-and-basic-indexing
# https://stackoverflow.com/questions/53841497/why-does-numpy-mixed-basic-advanced-indexing-depend-on-slice-adjacency
state = 0
has_contiguous_subspace = False
for index in indices:
if state == 0:
if index is not None:
state = 1
elif state == 1:
if index is None:
state = 2
else:
if index is not None:
break
else:
has_contiguous_subspace = True
# transposeToFront
# This is the logic that causes the newly inserted dimensions to show up
# at the beginning of the tensor, if they're not contiguous
if not has_contiguous_subspace:
dims = []
transposed_indices = []
for i, index in enumerate(indices):
if index is not None:
dims.append(i)
transposed_indices.append(index)
for i, index in enumerate(indices):
if index is None:
dims.append(i)
transposed_indices.append(index)
self = self.permute(dims)
indices = transposed_indices
# AdvancedIndex::AdvancedIndex
# Now we can assume the indices have contiguous subspace
# This is simplified from AdvancedIndex which goes to more effort
# to put the input and indices in a form so that TensorIterator can
# take them. If we write a ref for this, probably that logic should
# get implemented
before_shape: List[int] = []
after_shape: List[int] = []
replacement_shape: List[int] = []
for dim, index in enumerate(indices):
if index is None:
if replacement_shape:
after_shape.append(self.shape[dim])
else:
before_shape.append(self.shape[dim])
else:
replacement_shape = list(index.shape)
return self.new_empty(before_shape + replacement_shape + after_shape)
@register_meta([aten.addbmm.default, aten.addbmm.out])
@out_wrapper()
def meta_addbmm(self, batch1, batch2, *, beta=1, alpha=1):
dim1 = batch1.size(1)
dim2 = batch2.size(2)
self = self.expand((dim1, dim2))
check(batch1.dim() == 3, lambda: "batch1 must be a 3D tensor")
check(batch2.dim() == 3, lambda: "batch2 must be a 3D tensor")
check(
batch1.size(0) == batch2.size(0),
lambda: f"batch1 and batch2 must have same number of batches, got {batch1.size(0)} and {batch2.size(0)}",
)
check(
batch1.size(2) == batch2.size(1),
lambda: (
f"Incompatible matrix sizes for bmm ({batch1.size(1)}x{batch1.size(2)} "
f"and {batch2.size(1)}x{batch2.size(2)})"
),
)
check(
self.size(0) == dim1 and self.size(1) == dim2,
lambda: "self tensor does not match matmul output shape",
)
return self.new_empty(self.size())
@torch.library.impl(meta_lib, "_cdist_forward")
def meta_cdist_forward(x1, x2, p, compute_mode):
check(
x1.dim() >= 2,
lambda: f"cdist only supports at least 2D tensors, X1 got: {x1.dim()}D",
)
check(
x2.dim() >= 2,
lambda: f"cdist only supports at least 2D tensors, X2 got: {x2.dim()}D",
)
check(
x1.size(-1) == x2.size(-1),
lambda: f"X1 and X2 must have the same number of columns. X1: {x1.size(-1)} X2: {x2.size(-1)}",
)
check(
utils.is_float_dtype(x1.dtype),
lambda: "cdist only supports floating-point dtypes, X1 got: {x1.dtype}",
)
check(
utils.is_float_dtype(x2.dtype),
lambda: "cdist only supports floating-point dtypes, X2 got: {x2.dtype}",
)
check(p >= 0, lambda: "cdist only supports non-negative p values")
check(
compute_mode >= 0 and compute_mode <= 2,
lambda: f"possible modes: 0, 1, 2, but was: {compute_mode}",
)
r1 = x1.size(-2)
r2 = x2.size(-2)
batch_tensor1 = x1.shape[:-2]
batch_tensor2 = x2.shape[:-2]
output_shape = list(torch.broadcast_shapes(batch_tensor1, batch_tensor2))
output_shape.extend([r1, r2])
return x1.new_empty(output_shape)
@torch.library.impl(meta_lib, "_embedding_bag")
def meta_embedding_bag(
weight,
indices,
offsets,
scale_grad_by_freq=False,
mode=0,
sparse=False,
per_sample_weights=None,
include_last_offset=False,
padding_idx=-1,
):
check(
indices.dtype in (torch.long, torch.int),
lambda: f"expected indices to be long or int, got {indices.dtype}",
)
check(
offsets.dtype in (torch.long, torch.int),
lambda: f"expected offsets to be long or int, got {offsets.dtype}",
)
check(
utils.is_float_dtype(weight.dtype),
lambda: f"expected weight to be floating point type, got {weight.dtype}",
)
num_bags = offsets.size(0)
if include_last_offset:
check(
num_bags >= 1, lambda: "include_last_offset: numBags should be at least 1"
)
num_bags -= 1
output = weight.new_empty(num_bags, weight.size(1))
MODE_SUM, MODE_MEAN, MODE_MAX = range(3)
if per_sample_weights is not None:
check(
mode == MODE_SUM,
lambda: "embedding_bag: per_sample_weights only supported with mode='sum'",
)
check(
per_sample_weights.dtype == weight.dtype,
lambda: f"expected weight ({weight.dtype}) and per_sample_weights ({per_sample_weights.dtype}) to have same dtype",
)
check(
per_sample_weights.ndim == 1,
lambda: f"expected per_sample_weights to be 1D tensor, got {per_sample_weights.ndim}D",
)
check(
per_sample_weights.numel() == indices.numel(),
lambda: (
f"expected per_sample_weights.numel() ({per_sample_weights.numel()} "
f"to be the same as indices.numel() ({indices.numel()})"
),
)
def is_fast_path_index_select_scale(src, scale, output, padding_idx):
return (
is_fast_path_index_select(src, output, padding_idx) and scale.stride(0) == 1
)
def is_fast_path_index_select(src, output, padding_idx):
return (
(src.dtype == torch.float or src.dtype == torch.half)
and src.stride(1) == 1
and output.stride(1) == 1
and padding_idx < 0
)
def is_fast_path(src, scale, output, padding_idx):
if scale is not None:
return is_fast_path_index_select_scale(src, scale, output, padding_idx)
else:
return is_fast_path_index_select(src, output, padding_idx)
if offsets.device.type != "cpu":
offset2bag = indices.new_empty(indices.size(0))
bag_size = indices.new_empty(offsets.size())
if mode == MODE_MAX:
max_indices = indices.new_empty(num_bags, weight.size(1))
else:
max_indices = indices.new_empty(0)
else:
fast_path_sum = is_fast_path(weight, per_sample_weights, output, padding_idx)
if mode == MODE_MEAN or mode == MODE_MAX or not fast_path_sum:
offset2bag = offsets.new_empty(indices.size(0))
else:
offset2bag = offsets.new_empty(0)
bag_size = offsets.new_empty(num_bags)
max_indices = offsets.new_empty(bag_size.size())
return output, offset2bag, bag_size, max_indices
@register_meta([aten.diag.default, aten.diag.out])
@out_wrapper()
def meta_diag(self, dim=0):
check(self.dim() in (1, 2), lambda: "matrix or a vector expected")
if self.dim() == 1:
sz = self.size(0) + abs(dim)
return self.new_empty((sz, sz))
# case: dim is 2
if dim >= 0:
sz = min(self.size(0), self.size(1) - dim)
else:
sz = min(self.size(0) + dim, self.size(1))
return self.new_empty((sz,))
@torch.library.impl(meta_lib, "_embedding_bag_forward_only")
def meta_embedding_bag_forward_only(weight, indices, offsets, *args):
output, offset2bag, bag_size, max_indices = meta_embedding_bag(
weight, indices, offsets, *args
)
if offsets.device.type == "cpu":
bag_size = offsets.new_empty(offsets.size())
return output, offset2bag, bag_size, max_indices
def _get_reduction_dtype(input, dtype, promote_int_to_long=True):
# if specified, dtype takes precedence
if dtype:
return dtype
if input.dtype.is_floating_point or input.dtype.is_complex:
return input.dtype
elif promote_int_to_long:
return torch.long
return input.dtype
@register_meta([aten.nansum.default, aten.nansum.out])
@out_wrapper()
def meta_nansum(input, dims=None, keepdim=False, *, dtype=None):
output_dtype = _get_reduction_dtype(input, dtype, promote_int_to_long=True)
dims = utils.reduction_dims(input.shape, dims)
output_shape = _compute_reduction_shape(input, dims, keepdim)
return input.new_empty(output_shape, dtype=output_dtype)
@register_meta(aten.nanmedian.default)
def meta_nanmedian(input):
output_shape = utils.compute_reduction_output_shape(
input.shape, tuple(range(input.dim()))
)
return input.new_empty(output_shape)
@register_meta([aten.nanmedian.dim, aten.nanmedian.dim_values])
@out_wrapper("values", "indices")
def meta_nanmedian_dim(input, dim=-1, keepdim=False):
dim = utils.reduction_dims(input.shape, (dim,))
output_shape = _compute_reduction_shape(input, dim, keepdim)
return (
input.new_empty(output_shape),
input.new_empty(output_shape, dtype=torch.long),
)
@torch.library.impl(meta_lib, "logical_not_")
def meta_logical_not_(self):
return self
# We must also trigger meta registrations from PrimTorch ref
# decompositions
import torch._refs
import torch._refs.nn.functional
import torch._refs.special