-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathadkGSL.c
632 lines (535 loc) · 16.2 KB
/
adkGSL.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
/*
/
/ adkGSL.c
/
/ homebrewed addons to gsl */
#include <gsl/gsl_vector.h>
#include <gsl/gsl_matrix.h>
#include <gsl/gsl_sort.h>
#include <gsl/gsl_sort_vector.h>
#include <gsl/gsl_statistics.h>
#include <gsl/gsl_rng.h>
#include <gsl/gsl_cblas.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <assert.h>
//#include "../extern/include/f2c.h"
//#include "../extern/include/blaswrap.h"
//#include <clapack.h>
//#include <vecLib/cblas.h>
//#include <accelerate/accelerate.h>
#include "adkGSL.h"
#define SUM_LOG_THRESHOLD -10
//gsl_matrix_covariance-- computes sample covariance matrix and stores it in matrix cov
void gsl_matrix_covariance(gsl_matrix *data, gsl_matrix *cov){
gsl_vector_view a, b;
size_t i, j;
double v;
for (i = 0; i < data->size2; i++) {
for (j = 0; j < data->size2; j++) {
a = gsl_matrix_column (data, i);
b = gsl_matrix_column (data, j);
v = gsl_stats_covariance (a.vector.data, a.vector.stride,
b.vector.data, b.vector.stride, a.vector.size);
gsl_matrix_set (cov, i, j, v);
}
}
}
/*gsl_vector_includes() - returns 1 or 0 depending on result */
int gsl_vector_includes(gsl_vector *aVec, double aValue){
int i;
for(i = 0; i < aVec->size; i++){
if (gsl_vector_get(aVec, i) == aValue){
return(1);
}
}
return(0);
}
void gsl_matrix_prettyPrint(gsl_matrix *m){
int i, j;
for(i=0;i<m->size1;i++){
for(j=0;j<m->size2;j++){
printf("%.6f ",gsl_matrix_get(m,i,j));
}
printf("\n");
}
printf("///////////\n");
}
double gsl_vector_sum(gsl_vector *aVec, int aVecSize){
double sum;
int i;
sum = 0;
for (i = 0; i < aVecSize; i++){
sum += gsl_vector_get(aVec, i);
}
return sum;
}
double gsl_vector_dot_product(gsl_vector *vec1, gsl_vector *vec2){
int i;
double dot = 0.0;
assert(vec1->size == vec2->size);
for(i = 0; i < vec1->size; i++){
dot += gsl_vector_get(vec1, i) * gsl_vector_get(vec2, i);
}
return(dot);
}
void gsl_vector_outer_product(gsl_vector *vec1, gsl_vector *vec2, gsl_matrix *result){
int i,j;
assert(vec1->size == result->size1 || vec2->size == result->size2);
for(i = 0; i < vec1->size; i++){
for(j = 0; j < vec2->size; j++){
gsl_matrix_set(result,i,j,gsl_vector_get(vec1,i) * gsl_vector_get(vec2,j));
}
}
}
double gsl_matrix_row_sum(gsl_matrix *mat, int iRow, int rowSize){
gsl_vector_view aRow;
double sum = 0;
int i;
aRow = gsl_matrix_row(mat, iRow);
for (i = 0; i< rowSize; i++){
sum += gsl_vector_get(&aRow.vector, i);
}
return sum;
}
//gsl_matrix_row_max -- returns the max value of a row
double gsl_matrix_row_max(gsl_matrix *mat, int iRow){
double max = 0;
double tmp;
int i;
for (i = 0; i< mat->size2; i++){
tmp = gsl_matrix_get(mat,iRow,i);
if(max < tmp) max = tmp ;
}
return max;
}
//gsl_matrix_sum -- returns sum of all values in matrix
double gsl_matrix_sum(gsl_matrix *mat){
double sum = 0;
int i, j;
for (i = 0; i< mat->size1; i++){
for (j = 0; j< mat->size2; j++){
sum += gsl_matrix_get(mat, i,j);
}
}
return sum;
}
//gsl_matrix_bootstrap-- fill matrix boot with samples with replacement from orignal
// needs an initialize random number generator
void gsl_matrix_bootstrap(gsl_matrix *orig, gsl_matrix *boot, gsl_rng *rng){
size_t i, j, k, K;
K = (size_t) orig->size1 * orig->size2;
double probs[K], sum;
int randM[K];
int M;
sum = gsl_matrix_sum(orig);
M = (int) sum;
k = 0;
for (i = 0; i < orig->size1; i++) {
for (j = 0; j < orig->size2; j++) {
probs[k++] = gsl_matrix_get(orig,i,j) / M;
}
}
gsl_ran_multinomial (rng,K,M, probs, randM);
k = 0;
for (i = 0; i < orig->size1; i++) {
for (j = 0; j < orig->size2; j++) {
gsl_matrix_set(boot,i,j,randM[k++]);
}
}
}
/* efficiently compute log of sum of values, which themselves are
stored as logs: that is, return log(sum_i exp(l_i)). The largest
of the elements of l (call it maxval) is factored out, so that
log(sum_i(exp(l_i))) = maxval + log(1 + sum_i(exp(l_i-maxval))),
where the new sum is taken over 2 <= i < n. All of the quantities
in the exp must be negative, and those smaller than some reasonable
threshold can be ignored. [Thanks to David Haussler for showing me
this trick]. This code was adapted from code kindly given to me by Adam Siepel */
double log_sum(gsl_vector *vec) {
double maxval, expsum;
int k;
if (vec->size > 1){
gsl_sort_vector(vec);
gsl_vector_reverse(vec);
}
maxval = gsl_vector_get(vec, 0);
expsum = 1;
k = 1;
while (k < vec->size && gsl_vector_get(vec, k) - maxval > SUM_LOG_THRESHOLD){
expsum += exp(gsl_vector_get(vec, k++) - maxval);
}
return maxval + log(expsum);
}
/*the following methods are wrappers for use with LAPACK */
void set_lapack_entry(double *A, int i, int j, int nrows, double val){
A[j*nrows+i] = val;
}
double get_lapack_entry(double *a, int i, int j,int nrows){
printf("ha");
return a[j*nrows+i];
}
/*this is meant to be a conversion utility */
double *gsl_matrix_2_lapack(gsl_matrix *m){
double *lapack_mat;
int i, j;
lapack_mat = malloc(m->size1 * m->size2 * sizeof(double));
for(i = 0; i < m->size1; i++){
for(j = 0; j < m->size2; j++){
set_lapack_entry(lapack_mat, i, j,m->size1, gsl_matrix_get(m, i, j));
}
}
return lapack_mat;
}
gsl_matrix *lapack_2_gsl_matrix(double *A, int nrows, int ncols){
int i, j;
gsl_matrix *new;
new = gsl_matrix_alloc(nrows,ncols);
for(i=0;i<nrows;i++){
for(j=0;j<ncols;j++){
gsl_matrix_set(new,i,j,get_lapack_entry(A,i,j,nrows));
}
}
return new;
}
// gsl_matrix *gsl_matrix_power_logs(gsl_matrix *aMatrix, int power){
// gsl_matrix *powerMat, *logMat;
// int i, j;
// double x;
//
//
// powerMat = gsl_matrix_power(aMatrix, power);
// logMat = gsl_matrix_alloc(aMatrix->size1, aMatrix->size2);
// for(i = 0; i < aMatrix->size1; i++){
// for(j = 0; j < aMatrix->size2; j++){
// x = gsl_matrix_get(powerMat, i, j);
// gsl_matrix_set(logMat, i, j, log(x));
// }
// }
// gsl_matrix_free(powerMat);
// return(logMat);
// }
// gsl_matrix *gsl_matrix_power(gsl_matrix *aMatrix, int power){
// gsl_matrix *revect, *levect;
// double *dataMat, *wr, *wi, *vl, *vr, *aMat, *bMat, *cMat, *dMat, *work;
// int lwork, i, j, n ;
// assert(aMatrix->size1 == aMatrix->size2);
// n = aMatrix->size1;
//
// if (power == 1){
// gsl_matrix * solMat = gsl_matrix_alloc(n, n);
// for(i=0; i < n; i++){
// for(j = 0; j< n; j++){
// gsl_matrix_set(solMat, i, j, gsl_matrix_get(aMatrix,i,j));
// }
// }
// return(solMat);
// }
//
//
// //allocate space for eigenvector matrices, and other result holders
// levect = gsl_matrix_alloc(n, n);
// revect = gsl_matrix_alloc(n, n);
// wr = malloc(n * sizeof(double));
// wi = malloc(n * sizeof(double));
// vl = malloc(n * n * sizeof(double));
// vr = malloc(n * n * sizeof(double));
// lwork = 20 * n;
// work = malloc(lwork * sizeof(double));
//
// //move data to LAPACK (col major) format
// dataMat = gsl_matrix_2_lapack(aMatrix);
//
// //run LAPACK routine dgeev
// // #ifdef OSX
// dgeev('V','V',n, dataMat, n, wr, wi, vl, n, vr, n, work, lwork);
// //#else
// //dgeev_('V','V',n, dataMat, n, wr, wi, vl, n, vr, n, work, lwork, info);
// //#endif
// //collect eigenvalues into matrices
// for(i=0; i < n; i++){
// for(j = 0; j< n; j++){
// gsl_matrix_set(revect, i, j, vr[j*2+i]);
// gsl_matrix_set(levect, j, i, vl[j*2+i]);
// }
// }
//
// /* rescale such that revect and levect are inverses */
// /* see Press et al. (Numerical Recipes) for a very clear explanation
// of the relationship between the left and right eigenvectors */
// for(i = 0; i < n; i++){
// double dotProd = 0.0;
// /* compute dot product of row i in levect and col i in revect */
// for(j = 0; j< n; j++){
// dotProd += gsl_matrix_get(levect, i, j) * gsl_matrix_get(revect,j,i);
// }
//
// /* now rescale levect */
// for(j = 0; j< n; j++){
// double old = gsl_matrix_get(levect, i, j);
// double scaled = old / dotProd;
// gsl_matrix_set(levect, i, j, scaled);
// }
// }
//
// //prepare for matrix multiplication
// gsl_matrix * solMat = gsl_matrix_alloc(n, n);
// gsl_matrix * diag = gsl_matrix_alloc(n, n);
// gsl_matrix_set_all(diag, 0);
// for(j = 0; j< n; j++){
// gsl_matrix_set(diag, j,j, pow(wr[j],power));
// }
//
// aMat = gsl_matrix_2_lapack(diag);
// bMat = gsl_matrix_2_lapack(revect);
// cMat = malloc(n * n * sizeof(double));
//
// //compute a^t = s^-1 * diag^t * s
// //cblas_dgemm(CblasColMajor, CblasNoTrans, CblasTrans, n, n, n, 1.0, aMat, n, bMat, n, 0.0, cMat, n);
// free(bMat);
//
// bMat = gsl_matrix_2_lapack(levect);
// dMat = malloc(n * n * sizeof(double));
// //cblas_dgemm(CblasColMajor, CblasTrans, CblasNoTrans, n, n, n, 1, cMat, n, bMat, n, 0.0, dMat, n);
//
// //put results into gsl_matrix
// for(i = 0; i < n; i++){
// for(j = 0; j < n; j++){
// gsl_matrix_set(solMat, i, j, dMat[j*n+i]);
// }
// }
//
// //cleanup
// gsl_matrix_free(levect);
// gsl_matrix_free(revect);
// gsl_matrix_free(diag);
// free(work);
// free(vl);
// free(vr);
// free(wi);
// free(wr);
// free(aMat);
// free(bMat);
// free(cMat);
// free(dMat);
// free(dataMat);
// return(solMat);
// }
//returns the trace of a matrix-- sum of diag
double gsl_matrix_trace(gsl_matrix *x){
int i;
double sum = 0.0;
for(i=0;i<x->size1;i++){
sum += gsl_matrix_get(x,i,i);
}
return(sum);
}
//copies the lower triangle of src in to dest, sets others to zero
void gsl_matrix_lower_tri_copy(gsl_matrix *src, gsl_matrix *dest){
int i, j;
assert(src->size1 == dest->size1);
assert(src->size2 == dest->size2);
for(i = 0; i < src->size1; i++){
for(j = 0; j < src->size2; j++){
if(i<=j){
gsl_matrix_set(dest,i,j,gsl_matrix_get(src,i,j));
}
else{
gsl_matrix_set(dest,i,j,0.0);
}
}
}
}
//copies the upper triangle of src in to dest, sets others to zero
void gsl_matrix_upper_tri_copy(gsl_matrix *src, gsl_matrix *dest){
int i, j;
assert(src->size1 == dest->size1);
assert(src->size2 == dest->size2);
for(i = 0; i < src->size1 ;i++){
for(j = 0; j < src->size2; j++){
if(i>=j){
gsl_matrix_set(dest,i,j,gsl_matrix_get(src,i,j));
}
else{
gsl_matrix_set(dest,i,j,0.0);
}
}
}
}
//zeros out everything but lower tri-- in place
void gsl_matrix_lower_tri(gsl_matrix *x){
int i, j;
for(i = 0; i < x->size1; i++){
for(j = 0; j < x->size2; j++){
if(i>j) gsl_matrix_set(x,i,j,0.0);
}
}
}
//zeros out everything but upper tri-- in place
void gsl_matrix_upper_tri(gsl_matrix *x){
int i, j;
for(i = 0; i < x->size1; i++){
for(j = 0; j < x->size2; j++){
if(i<j) gsl_matrix_set(x,i,j,0.0);
}
}
}
//fillMatrixFromArray-- fills up a matrix based on nrow and ncol given *double
void fillMatrixFromArray(double *numbers, gsl_matrix *dest, int nrow, int ncol){
int i, j, count = 0;
assert(nrow == dest->size1);
for(i = 0; i < nrow; i++){
for(j=0;j<ncol;j++){
gsl_matrix_set(dest,i,j,numbers[count++]);
}
}
}
//fillMatrixFromArray-- fills up a matrix based on nrow and ncol given gsl_vector
void fillMatrixFromVector(gsl_vector *numbers, gsl_matrix *dest, int nrow, int ncol){
int i, j, count = 0;
assert(nrow == dest->size1);
for(i = 0; i < nrow; i++){
for(j=0;j<ncol;j++){
gsl_matrix_set(dest,i,j,gsl_vector_get(numbers,count++));
}
}
}
//fillArrayFromMatrix-- fills up a vector based gsl_matrix
void fillArrayFromMatrix(gsl_matrix *src, gsl_vector *dest){
int i, j, count = 0;
for(i = 0; i < src->size1; i++){
for(j=0;j<src->size2;j++){
gsl_vector_set(dest,count++, gsl_matrix_get(src,i,j));
}
}
}
//fillMatrixFromCholArray-- fills up a matrix based on nrow and ncol given arraay
// representing the Cholesky decomp
void fillMatrixFromCholArray(double *numbers, gsl_matrix *dest, int nrow, int ncol){
int i, j, count = 0;
for(i = 0; i < nrow; i++){
for(j=0;j<ncol;j++){
if(i<=j)gsl_matrix_set(dest,i,j,numbers[count++]);
}
}
}
void fillCholArrayFromMatrix(gsl_matrix *src, gsl_vector *dest){
int i, j, count = 0;
for(i = 0; i < src->size1; i++){
for(j=0;j<src->size2;j++){
if(i<=j){
gsl_vector_set(dest,count++, gsl_matrix_get(src,i,j));
//printf("i:%d j: %d val: %f\n",i,j,gsl_matrix_get(src,i,j) );
}
}
}
}
//////////////////////////////////////////////////////////////////////////////////////////////////////////
#ifdef OSX
/*some wrappers for use with the OS X vecLib LAPACK implementation */
/*wrapper for the lapack eigensystem routine dgeev_*/
/*
int dgeev(char jobvl, char jobvr, int n, double *a, int lda, double *wr, double *wi, double *vl,
int ldvl,double *vr, int ldvr, double *work, int lwork){
__CLPK_integer _n, _lda, _ldvl, _ldvr, _lwork, info;
_n = (__CLPK_integer) n;
_lda = (__CLPK_integer) lda;
_ldvl =(__CLPK_integer) ldvl;
_ldvr =(__CLPK_integer) ldvr;
_lwork =(__CLPK_integer) lwork;
dgeev_(&jobvl, &jobvr, &_n, a, &_lda, wr, wi, vl, &_ldvl, vr, &_ldvr, work, &_lwork, &info);
return info;
} */
/*wrapper for the lapack eigensystem routine dsyev_
int dsyev(char jobvl, char uplo, int n, double *a, int lda, double *w, double *work, int lwork){
__CLPK_integer _n, _lda, _lwork, info;
_n = (__CLPK_integer) n;
_lda = (__CLPK_integer) lda;
_lwork =(__CLPK_integer) lwork;
dsyev_(&jobvl, &uplo, &_n, a, &_lda, w, work, &_lwork, &info);
return info;
}
int dgehrd(int n, int ilo, int ihi, double *a, int lda, double *tau, double *work, int lwork){
__CLPK_integer _n, _ilo, _ihi, _lda, _lwork, info;
_n = (__CLPK_integer) n;
_lda = (__CLPK_integer) lda;
_lwork =(__CLPK_integer) lwork;
_ilo =(__CLPK_integer) ilo;
_ihi =(__CLPK_integer) ihi;
dgehrd_(&_n, &_ilo, &_ihi, a, &_lda, tau, work, &_lwork, &info);
return info;
}
int dgebal(char job, int n, double *a, int lda, int ilo, int ihi, double *scale){
__CLPK_integer _n, _ilo, _ihi, _lda, info;
_n = (__CLPK_integer) n;
_lda = (__CLPK_integer) lda;
_ilo =(__CLPK_integer) ilo;
_ihi =(__CLPK_integer) ihi;
dgebal_(&job, &_n, a, &_lda, &_ilo, &_ihi, scale, &info);
return info;
}
int dhseqr(char job, char compz, int n, int ilo, int ihi,double *h, int ldh, double *wr, double *wi, double *z, int ldz, double *work, int lwork){
__CLPK_integer _n, _ilo, _ihi, _ldh, _ldz, _lwork, info;
_n = (__CLPK_integer) n;
_ldh = (__CLPK_integer) ldh;
_ilo =(__CLPK_integer) ilo;
_ihi =(__CLPK_integer) ihi;
_ldz = (__CLPK_integer) ldz;
_lwork = (__CLPK_integer) lwork;
dhseqr_(&job, &compz, &_n, &_ilo, &_ihi, h, &_ldh, wr, wi, z,&_ldz, work, &_lwork, &info);
return info;
}
#endif
int dgeev(char jobvl, char jobvr, int n, double *a, int lda, double *wr, double *wi, double *vl,
int ldvl,double *vr, int ldvr, double *work, int lwork){
long int _n, _lda, _ldvl, _ldvr, _lwork, info;
_n = n;
_lda = lda;
_ldvl = ldvl;
_ldvr = ldvr;
_lwork = lwork;
dgeev_(&jobvl, &jobvr, &_n, a, &_lda, wr, wi, vl, &_ldvl, vr, &_ldvr, work, &_lwork, &info);
return info;
}
int dsyev(char jobvl, char uplo, int n, double *a, int lda, double *w, double *work, int lwork){
long int _n, _lda, _lwork, info;
_n = n;
_lda = lda;
_lwork = lwork;
dsyev_(&jobvl, &uplo, &_n, a, &_lda, w, work, &_lwork, &info);
return info;
}
int dgehrd(int n, int ilo, int ihi, double *a, int lda, double *tau, double *work, int lwork){
long int _n, _ilo, _ihi, _lda, _lwork, info;
_n = n;
_lda = lda;
_lwork = lwork;
_ilo = ilo;
_ihi = ihi;
dgehrd_(&_n, &_ilo, &_ihi, a, &_lda, tau, work, &_lwork, &info);
return info;
}
int dgebal(char job, int n, double *a, int lda, int ilo, int ihi, double *scale){
long int _n, _ilo, _ihi, _lda, info;
_n = n;
_lda = lda;
_ilo = ilo;
_ihi = ihi;
dgebal_(&job, &_n, a, &_lda, &_ilo, &_ihi, scale, &info);
return info;
}
int dhseqr(char job, char compz, int n, int ilo, int ihi,double *h, int ldh, double *wr, double *wi, double *z, int ldz, double *work, int lwork){
long int _n, _ilo, _ihi, _ldh, _ldz, _lwork, info;
_n = n;
_ldh = ldh;
_ilo = ilo;
_ihi = ihi;
_ldz = ldz;
_lwork = lwork;
dhseqr_(&job, &compz, &_n, &_ilo, &_ihi, h, &_ldh, wr, wi, z,&_ldz, work, &_lwork, &info);
return info;
}
*/
#endif