-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgo.jy
executable file
·164 lines (142 loc) · 6.9 KB
/
go.jy
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
#!/usr/bin/env jython
import os
import sys
def makeDataset(dataset,subset):
return {
'queries': "%s/%s.answerQuery_did_qid_eid.queries" % (dataset,subset),
'examples': "%s/%s.examples" % (dataset,subset),
'grounded': "%s/%s.examples.cooked" % (dataset,subset),
'solutions': {
'untrained': "%s/%s.solutions.txt" % (dataset,subset),
'trained': "%s/%s.trained.solutions.txt" % (dataset,subset)
},
'params': "%s/%s.params.wts" % (dataset,subset)
}
def go(dataset):
# load Configuration
flags = Configuration.USE_DEFAULTS \
| Configuration.USE_PARAMS \
| Configuration.USE_SRW \
| Configuration.USE_LEARNINGSET
train = makeDataset(dataset,"kbp_train.1")
test = makeDataset(dataset,"kbp_test.1")
print "Jython: instantiating ExperimentConfiguration..."
c = ExperimentConfiguration([
x % {"d":dataset} for x in [
'--programFiles','%(d)s/kbp.crules:%(d)s/kbp.sparse',
'--prover','dpr:1e-5',
'--weightingScheme','ReLU',
'--threads','16',
'--params','%(d)s/params.wts',
'--trainer','mrr']],flags)
c.tester = Tester(c.prover,c.program)
print "Jython: done instantiating ExperimentConfiguration."
for examples in [train,test]:
examples_file = open(examples['examples'],'w')
# for each query,
# save to examples file
# save to cooked file
# accumulate performance metrics
for rawX in RawPosNegExampleStreamer([File(examples['queries'])]).stream():
thawedX = c.tester.thawExample(rawX,c.program)
writer = GraphWriter()
# get solutions
solutions = c.prover.proveState(c.program, thawedX.getQueryState(), writer)
pos = []
neg = []
total = []
# sample negative examples: take the k*kth negative solution for k=1,2,...
k=1
i=0
for state in solutions.keySet():
wt = solutions.get(state)
if state.isSolution():
i = i + 1
total.append( (state,wt) )
if state.getGroundGoal() in thawedX.getPosSet():
pos.append(state)
i = i - 1
elif i == k*k:
neg.append(state)
k = k+1
# save to examples file
examples_file.write( "%s" % thawedX.getQueryState().getHeadGoal().toSaveString().replace("-1","E") )
for state in pos:
examples_file.write( "\t+%s" % state.getGroundGoal().toSaveString())
for state in neg:
examples_file.write( "\t-%s" % state.getGroundGoal().toSaveString())
examples_file.write("\n")
# gather graph IDs for grounded file
posIds = []
negIds = []
for (state) in pos:
posIds.append( writer.getId(state) )
for (state) in neg:
negIds.append( writer.getId(state) )
query = HashMap()
query.put( writer.getId(thawedX.getQueryState()), 1.0 )
result = PosNegRWExample(writer.getGraph(), query, posIds, negIds)
examples_file.close()
# untrained inference training examples
print "Jython: untrained inference on training examples..."
utr_results = c.tester.testExamples(File(train['examples']))
print "Jython: done performing untrained inference on training examples."
# untrained inference testing examples
print "Jython: untrained inference on testing examples..."
ute_results = c.tester.testExamples(File(test['examples']))
print "Jython: done performing untrained inference on testing examples."
# cook training examples
#train_cooked = "%s/kbp_train.examples.cooked"
print "Jython: grounding training examples..."
cooker = ModularMultiExampleCooker(c.prover, c.program, c.nthreads)
cooker.cookExamples(File(train['examples']), train['grounded'])
print "Jython: done grounding training examples."
# cook testing examples
print "Jython: grounding testing examples..."
cooker.cookExamples(File(test['examples']), test['grounded'])
print "Jython: done grounding testing examples."
# train training examples
print "Jython: training parameters on training examples..."
paramVec = c.trainer.trainParametersOnCookedIterator(
CookedExampleStreamer(train['grounded'],AnnotatedGraphFactory(AnnotatedGraphFactory.STRING)),
c.epochs,c.traceLosses)
ParamsFile.save(paramVec,File(train['params']),c)
c.tester.setParams(paramVec,c.weightingScheme)
print "Jython: done training parameters."
# trained inference training examples
print "Jython: trained inference on training examples..."
ttr_results = c.tester.testExamples(File(train['examples']))
print "Jython: done performing trained inference on training examples."
# trained inference testing examples
print "Jython: trained inference on testing examples..."
tte_results = c.tester.testExamples(File(test['examples']))
print "Jython: done performing trained inference on testing examples."
print "\nJython: Done.\n"
if len(sys.argv) < 3:
print "Usage:"
print "\t",sys.argv[0],"path/to/proppr kbp.dataset\n"
else:
proppr_path = sys.argv[1]
dataset = sys.argv[2]
sys.path.append(os.path.join(proppr_path,'bin'))
proppr_lib = os.path.join(proppr_path,'lib')
jars = [f for f in os.listdir(proppr_lib) if f.endswith(".jar")]
[sys.path.append(os.path.join(proppr_lib,j)) for j in jars]
import edu.cmu.ml.praprolog.ExampleCooker.CookingStatistics as Statistics
import org.apache.log4j.PropertyConfigurator as PropertyConfigurator
import edu.cmu.ml.praprolog.util.Configuration as Configuration
import edu.cmu.ml.praprolog.util.ExperimentConfiguration as ExperimentConfiguration
import edu.cmu.ml.praprolog.ExampleCooker as ExampleCooker
import edu.cmu.ml.praprolog.ModularMultiExampleCooker as ModularMultiExampleCooker
import edu.cmu.ml.praprolog.prove.RawPosNegExampleStreamer as RawPosNegExampleStreamer
import edu.cmu.ml.praprolog.graph.GraphWriter as GraphWriter
import edu.cmu.ml.praprolog.learn.tools.PosNegRWExample as PosNegRWExample
import edu.cmu.ml.praprolog.Tester as Tester
import edu.cmu.ml.praprolog.learn.tools.CookedExampleStreamer as CookedExampleStreamer
import edu.cmu.ml.praprolog.graph.AnnotatedGraphFactory as AnnotatedGraphFactory
import edu.cmu.ml.praprolog.util.Dictionary as Dictionary
import edu.cmu.ml.praprolog.util.ParamsFile as ParamsFile
import java.io.File as File
import java.util.HashMap as HashMap
PropertyConfigurator.configure(os.path.join(proppr_path,'conf','log4j.properties'))
go(dataset)