-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathplotTrajectories.py
149 lines (101 loc) · 4.67 KB
/
plotTrajectories.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
from lieFunctions import axisAngle_to_rotMat, quat_to_rotMat, euler_to_rotMat
import os
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import numpy as np
import torch
import glob
import warnings
warnings.filterwarnings("ignore")
def getGroundTruthTrajectory(seq, seqLength, dataDir):
cameraTraj = np.empty([seqLength,3])
# poses = open(os.path.join(dataDir, 'poses', str(seq).zfill(2) + '.txt'))
poses = np.loadtxt(os.path.join(dataDir, 'poses', str(seq).zfill(2) + '.txt'))
# poses = open("/data/milatmp1/sharmasa/"+ dataset + "/dataset/poses/" + str(seq).zfill(2) + ".txt").readlines()
for frame in range(seqLength):
# pose = np.concatenate((np.asarray([(float(i)) for i in poses[frame].split(' ')]).reshape(3,4) , [[0.0,0.0,0.0,1.0]]), axis=0);
pose = np.concatenate((np.asarray(poses[frame]).reshape(3, 4), [[0., 0., 0., 1.]]), axis = 0)
cameraTraj[frame,:] = pose[0:3,3].T;
return cameraTraj;
def plotSequenceRelative(expDir, seq, seqLength, trajectory, dataDir, cmd, epoch):
T = np.eye(4);
estimatedCameraTraj = np.empty([seqLength,3])
# Extract the camera centres from all the frames
# First frame as the world origin
estimatedCameraTraj[0] = np.zeros([1,3]);
for frame in range(seqLength-1):
# Output is pose of frame i+1 with respect to frame i
relativePose = trajectory[frame,:]
if cmd.outputParameterization == 'default':
R = axisAngle_to_rotMat(np.transpose(relativePose[:3]))
t = np.reshape(relativePose[3:],(3,1))
elif cmd.outputParameterization == 'quaternion':
R = quat_to_rotMat(relativePose[:4])
t = np.reshape(relativePose[4:],(3,1))
elif cmd.outputParameterization == 'euler':
R = np.asarray(euler_to_rotMat(x = relativePose[0], y = relativePose[1], \
z = relativePose[3], seq = 'xyz'), dtype = np.float32)
t = (np.asarray(relativePose[3:], dtype = np.float32)).reshape((3,1))
T_r = np.concatenate( ( np.concatenate([R,t],axis=1) , [[0.0,0.0,0.0,1.0]] ) , axis = 0 )
# With respect to the first frame
T_abs = np.dot(T,T_r);
# Update the T matrix till now.
T = T_abs
# Get the origin of the frame (i+1), ie the camera center
estimatedCameraTraj[frame+1] = np.transpose(T[0:3,3])
# Get the ground truth camera trajectory
gtCameraTraj = getGroundTruthTrajectory(seq, seqLength, dataDir);
# Plot the estimated and groundtruth trajectories
x_gt = gtCameraTraj[:,0]
z_gt = gtCameraTraj[:,2]
x_est = estimatedCameraTraj[:,0]
z_est = estimatedCameraTraj[:,2]
# Save plot
# path = os.path.join(expDir, 'plots', 'traj', str(seq).zfill(2))
# currNumPlots = len(glob.glob1(path,"*.png"))
# assert (currNumPlots%2==0)
fig,ax = plt.subplots(1)
ax.plot(x_gt,z_gt, 'c', label = "ground truth")
ax.plot(x_est,z_est, 'm', label= "estimated")
ax.legend()
# fig.savefig(path + "/" + str(currNumPlots/2 + 1))
fig.savefig(os.path.join(expDir, 'plots', 'traj', str(seq).zfill(2), 'traj_' + str(epoch).zfill(3)))
# # To save only the predicted plot
# fig_,ax_ = plt.subplots(1)
# ax_.plot(x_est,z_est, 'm', label="estimated traj")
# ax_.legend()
# fig_.savefig(path + "/est_" + str(currNumPlots/2 + 1))
def plotSequenceAbsolute(expDir, seq, seqLength, trajectory, dataDir, cmd, epoch):
T = np.eye(4);
estimatedCameraTraj = np.empty([seqLength,3])
# Extract the camera centres from all the frames
for frame in range(seqLength-1):
# Output is pose of frame i+1 with respect to frame i
absolutePose = trajectory[frame,:]
if cmd.outputParameterization == 'default':
R = axisAngle_to_rotMat(np.transpose(absolutePose[:3]))
t = np.reshape(absolutePose[3:],(3,1))
elif cmd.outputParameterization == 'quaternion':
R = quat_to_rotMat(absolutePose[:4])
t = np.reshape(absolutePose[4:],(3,1))
elif cmd.outputParameterization == 'euler':
R = np.asarray(euler_to_rotMat(x = absolutePose[0], y = absolutePose[1], \
z = absolutePose[3], seq = 'xyz'), dtype = np.float32)
t = (np.asarray(absolutePose[3:], dtype = np.float32)).reshape((3,1))
T_r = np.concatenate( ( np.concatenate([R,t],axis=1) , [[0.0,0.0,0.0,1.0]] ) , axis = 0 )
# Get the origin of the frame (i+1), ie the camera center
estimatedCameraTraj[frame+1] = np.transpose(T_r[0:3,3])
# Get the ground truth camera trajectory
gtCameraTraj = getGroundTruthTrajectory(seq, seqLength, dataDir);
# Plot the estimated and groundtruth trajectories
x_gt = gtCameraTraj[:,0]
z_gt = gtCameraTraj[:,2]
x_est = estimatedCameraTraj[:,0]
z_est = estimatedCameraTraj[:,2]
# assert (currNumPlots%2==0)
fig,ax = plt.subplots(1)
ax.plot(x_gt,z_gt, 'c', label = "ground truth")
ax.plot(x_est,z_est, 'm', label= "estimated")
ax.legend()
fig.savefig(os.path.join(expDir, 'plots', 'traj', str(seq).zfill(2), 'traj_' + str(epoch).zfill(3)))