-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathtest.py
107 lines (83 loc) · 2.81 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
import sys
import numpy as np
import numpy as np
import os
import random as rn
import scipy.misc as smc
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
from liealgebra import rotMat_to_axisAngle
def checkRotMattoAxisAngle():
# Check for axis angle to rotation matrix
axisAngle_file = open("./matlab/axisData.txt",'r')
gt_file = open('./matlab/01.txt')
num_lines_ax = sum(1 for line in open('./matlab/axisData.txt'))
num_lines_gt = sum(1 for line in open('./matlab/01.txt'))
assert num_lines_ax == num_lines_gt
axisAngles = np.empty([num_lines_gt,3])
i=0
for line in axisAngle_file:
ax_= line.split()
ax_gt = np.empty([1,3])
ax_gt[0,0] = float(ax_[0]);
ax_gt[0,1] = float(ax_[1])
ax_gt[0,2] = float(ax_[2])
axisAngles[i,:] = ax_gt
i=i+1
axisAngle_file.close()
i=0
gt_file = open('./matlab/01.txt')
cross_prod=[]
for line in gt_file:
t = line.split() # r11 r12 r13 t1 r21 r22 r23 t2 r31 r32 r33 t3
rot = np.empty([3,3])
rot[0,0] = float(t[0])
rot[0,1] = float(t[1])
rot[0,2] = float(t[2])
rot[1,0] = float(t[4])
rot[1,1] = float(t[5])
rot[1,2] = float(t[6])
rot[1,0] = float(t[8])
rot[1,1] = float(t[9])
rot[1,2] = float(t[10])
ax_=rotMat_to_axisAngle(rot)
ax_est = np.empty([1,3])
ax_est[0,0] = ax_[0]
ax_est[0,1] = ax_[1]
ax_est[0,2] = ax_[2]
cross_prod.append(np.linalg.norm(np.cross(axisAngles[i,:], ax_est)))
gt_file.close()
fig,ax = plt.subplots(1)
ax.plot(cross_prod,'r', label="cross product norm")
plt.ylabel(" Cross product norm ")
plt.xlabel(" num samples ")
plt.ylim(-0.001,0.001)
fig.savefig("/u/sharmasa/Documents/DeepVO/matlab/axis-angleTest")
def computeMeanandStddevValue():
print("Computing mean ==> ")
mean=[]
for seq in range(11):
print(seq)
for frm in range(len(os.listdir("/data/milatmp1/sharmasa/"+ "KITTI" + "/dataset/sequences/" + str(seq).zfill(2) + "/image_2/"))):
img = smc.imread("/data/milatmp1/sharmasa/"+ "KITTI" + "/dataset/sequences/" + str(seq).zfill(2) + "/image_2/" + str(frm).zfill(6) + ".png")
mean.append(np.mean(img,axis=(0,1)))
mean = np.mean(mean,axis=0)
print("mean is (R, G, B) : ", mean)
print("Computing std dev ==> ")
stddev=[];
for seq in range(11):
print(seq)
for frm in range(len(os.listdir("/data/milatmp1/sharmasa/"+ "KITTI" + "/dataset/sequences/" + str(seq).zfill(2) + "/image_2/"))):
img = smc.imread("/data/milatmp1/sharmasa/"+ "KITTI" + "/dataset/sequences/" + str(seq).zfill(2) + "/image_2/" + str(frm).zfill(6) + ".png")
r = img[:,:,0] - mean[0]
g = img[:,:,1] - mean[1]
b = img[:,:,2] - mean[2]
r = np.square(r)
g = np.square(g)
b = np.square(b)
stddev.append([np.mean(r),np.mean(g),np.mean(b)])
stddev = np.sqrt(np.mean(stddev,axis=0));
print("Stddev is (R,G,B) : " , stddev)
#checkRotMattoAxisAngle()
computeMeanandStddevValue()