-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathAB Sample Size Calculations using Delta Method.R
209 lines (157 loc) · 7.95 KB
/
AB Sample Size Calculations using Delta Method.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
# Load necessary libraries
# library(truncnorm) # For truncated normal distributions
# library(dplyr) # For data manipulation
# library(pwr) # For power of test calculations
# Data generation process -----------------------------------------------------
set.seed(12)
# Define parameters
N <- 5000 # Total number of users
lambda <- 5 # Average number of sessions per user
a_mu <- 0.6 # Mean of the truncated normal distribution for conversion rate
b_mu <- 0.65
ate <- b_mu - a_mu
range <- 0.35 # Range for truncation to keep probabilities between 0 and 1
alpha <- 0.05 # Significance level for hypothesis testing
beta <- 0.2 # Power of the test
# Initialize vectors for session and conversion data
sess <- rpois(n = N, lambda = lambda) # sessions per user
conv <- numeric(N) # conversions per user
pi_values <- numeric(N) # user-specific conversion probabilities
# Simulate user behavior for session conversions
for (i in 1:N) {
pi <- rtruncnorm(n = 1, a = max(0, a_mu - range), b = min(1, a_mu + range), mean = a_mu, sd = range/2)
pi_values[i] <- pi
conv[i] <- sum(rbinom(n = sess[i], size = 1, prob = pi))
}
# Estimating 'h' and 'k' ------------------------------------------------------
# Compute 'h' and 'k' for determining sample sizes
h <- 1 / mean(sess)^2 * (var(conv) - 2 * mean(conv) / mean(sess) * cov(sess, conv) + mean(conv)^2 / mean(sess)^2 * var(sess))
k <- 2 * h * (qnorm(1 - alpha / 2) + qnorm(1 - beta))^2 / (ate^2)
k
max_sess <- k * mean(sess)
# Sample size calculation for independent binary data -------------------------
p_pool <- (a_mu + b_mu) / 2 # pooled proportion
ate <- abs(a_mu - b_mu) # absolute treatment effect
n <- 2 * p_pool * (1 - p_pool) * (qnorm(1 - alpha / 2) + qnorm(1 - beta))^2 / ate^2
n
# Power_corr function --------------------------------------------------------
power_corr <- function(N, lambda, a_mu, b_mu, range, num_simulations, alpha) {
t_stats <- numeric(num_simulations)
for (sim in 1:num_simulations) {
a_sess <- rpois(n = N, lambda = lambda)
b_sess <- rpois(n = N, lambda = lambda)
a_conv <- numeric(N)
b_conv <- numeric(N)
for (i in 1:N) {
a_pi <- rtruncnorm(n = 1, a = max(0, a_mu - range), b = min(1, a_mu + range), mean = a_mu, sd = range/2)
b_pi <- rtruncnorm(n = 1, a = max(0, b_mu - range), b = min(1, b_mu + range), mean = b_mu, sd = range/2)
a_conv[i] <- sum(rbinom(n = a_sess[i], size = 1, prob = a_pi))
b_conv[i] <- sum(rbinom(n = b_sess[i], size = 1, prob = b_pi))
}
X_mean <- (sum(a_conv)/N) / (sum(a_sess)/N)
Y_mean <- (sum(b_conv)/N) / (sum(b_sess)/N)
a_delta <- 1 / (mean(a_sess)^2 * N) * (var(a_conv) - 2 * mean(a_conv)/mean(a_sess) * cov(a_sess, a_conv) + mean(a_conv)^2/mean(a_sess)^2 * var(a_sess))
b_delta <- 1 / (mean(b_sess)^2 * N) * (var(b_conv) - 2 * mean(b_conv)/mean(b_sess) * cov(b_sess, b_conv) + mean(b_conv)^2/mean(b_sess)^2 * var(b_sess))
# Calculate t_stat for this simulation
t_stat <- (Y_mean - X_mean) / sqrt(a_delta + b_delta)
t_stats[sim] <- t_stat
}
power <- sum(abs(t_stats) > qnorm(1 - alpha / 2))
power_corr <- power / num_simulations
return(power_corr)
}
# Power_independent i function -------------------------------------------------
power_corr_a <- function(N, lambda, a_mu, b_mu, range, num_simulations, alpha, target_sessions) {
t_stats <- numeric(num_simulations)
for (sim in 1:num_simulations) {
# Initialize variables
a_sess <- rpois(n = N, lambda = lambda)
b_sess <- rpois(n = N, lambda = lambda)
a_conv <- numeric(N)
b_conv <- numeric(N)
# Initialize cumulative session count and user index
cumulative_sessions <- 0
last_included_user <- N
# Simulate for each user
for (i in 1:N) {
# Check if target sessions reached and break loop if so
if (cumulative_sessions >= target_sessions) {
last_included_user <- i - 1
break
}
# Update cumulative sessions
cumulative_sessions <- cumulative_sessions + a_sess[i] + b_sess[i]
# Simulate conversions
a_pi <- rtruncnorm(n = 1, a = max(0, a_mu - range), b = min(1, a_mu + range), mean = a_mu, sd = range/2)
b_pi <- rtruncnorm(n = 1, a = max(0, b_mu - range), b = min(1, b_mu + range), mean = b_mu, sd = range/2)
a_conv[i] <- sum(rbinom(n = a_sess[i], size = 1, prob = a_pi))
b_conv[i] <- sum(rbinom(n = b_sess[i], size = 1, prob = b_pi))
}
# Limit data to users up to last_included_user
a_sess <- a_sess[1:last_included_user]
b_sess <- b_sess[1:last_included_user]
a_conv <- a_conv[1:last_included_user]
b_conv <- b_conv[1:last_included_user]
X_mean <- (sum(a_conv)/N) / (sum(a_sess)/N)
Y_mean <- (sum(b_conv)/N) / (sum(b_sess)/N)
a_delta <- 1 / (mean(a_sess)^2 * N) * (var(a_conv) - 2 * mean(a_conv)/mean(a_sess) * cov(a_sess, a_conv) + mean(a_conv)^2/mean(a_sess)^2 * var(a_sess))
b_delta <- 1 / (mean(b_sess)^2 * N) * (var(b_conv) - 2 * mean(b_conv)/mean(b_sess) * cov(b_sess, b_conv) + mean(b_conv)^2/mean(b_sess)^2 * var(b_sess))
# Calculate t_stat for this simulation
t_stat <- (Y_mean - X_mean) / sqrt(a_delta + b_delta)
t_stats[sim] <- t_stat
}
power <- sum(abs(t_stats) > qnorm(1 - alpha / 2))
power_corr_a <- power / num_simulations
return(power_corr_a)
}
# Power_independent ii function -------------------------------------------------
power_corr_b <- function(N, lambda, a_mu, b_mu, range, num_simulations, alpha, max_sessions) {
t_stats <- numeric(num_simulations)
# Maximum number of sessions per group, from initial k calculations
max_sess <- max_sessions
for (sim in 1:num_simulations) {
a_sess <- rpois(n = N, lambda = lambda)
b_sess <- rpois(n = N, lambda = lambda)
# Proportionally reduce sessions for each group if they exceed the maximum
if (sum(a_sess) > max_sess) {
reduction_factor_a <- max_sess/ sum(a_sess)
a_sess <- round(a_sess * reduction_factor_a)
}
if (sum(b_sess) > max_sess) {
reduction_factor_b <- max_sess / sum(b_sess)
b_sess <- round(b_sess * reduction_factor_b)
}
a_conv <- numeric(N)
b_conv <- numeric(N)
for (i in 1:N) {
a_pi <- rtruncnorm(n = 1, a = max(0, a_mu - range), b = min(1, a_mu + range), mean = a_mu, sd = range/2)
b_pi <- rtruncnorm(n = 1, a = max(0, b_mu - range), b = min(1, b_mu + range), mean = b_mu, sd = range/2)
a_conv[i] <- sum(rbinom(n = a_sess[i], size = 1, prob = a_pi))
b_conv[i] <- sum(rbinom(n = b_sess[i], size = 1, prob = b_pi))
}
X_mean <- (sum(a_conv)/N) / (sum(a_sess)/N)
Y_mean <- (sum(b_conv)/N) / (sum(b_sess)/N)
a_delta <- 1 / (mean(a_sess)^2 * N) * (var(a_conv) - 2 * mean(a_conv)/mean(a_sess) * cov(a_sess, a_conv) + mean(a_conv)^2/mean(a_sess)^2 * var(a_sess))
b_delta <- 1 / (mean(b_sess)^2 * N) * (var(b_conv) - 2 * mean(b_conv)/mean(b_sess) * cov(b_sess, b_conv) + mean(b_conv)^2/mean(b_sess)^2 * var(b_sess))
# Calculate t_stat for this simulation
t_stat <- (Y_mean - X_mean) / sqrt(a_delta + b_delta)
t_stats[sim] <- t_stat
}
power_corr_b <- sum(abs(t_stats) > qnorm(1 - alpha / 2)) / num_simulations
return(power_corr_b)
}
# Parameters --------------------------------------------------------------
# Example usage
N <- k
lambda <- 5
a_mu <- 0.6
b_mu <- 0.65
range <- 0.35
alpha <- 0.05
beta <- 0.2
num_simulations <- 100
target_sessions <- n*2
max_sessions <- max_sess
power_corr <- power_corr(N, lambda, a_mu, b_mu, range, num_simulations, alpha)
power_corr_a <- power_corr_a(N, lambda, a_mu, b_mu, range, num_simulations, alpha, target_sessions)
power_corr_b <- power_corr_b(N, lambda, a_mu, b_mu, range, num_simulations, alpha, max_sessions)