-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathdataset_utils.py
315 lines (269 loc) · 9.99 KB
/
dataset_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
import collections
import csv
import json
import random
import string
import sys
from datetime import datetime
from pathlib import Path
from typing import Optional
import d4rl
# TODO use ultra only for antmaze-ultra
# import d4rlultra.d4rl as d4rl
import gym
import numpy as np
from tqdm import tqdm
Batch = collections.namedtuple(
"Batch", ["observations", "initial_observations", "actions", "rewards", "masks", "next_observations"]
)
def split_into_trajectories(
observations, actions, rewards, masks, dones_float, next_observations
):
trajs = [[]]
for i in tqdm(range(len(observations))):
trajs[-1].append(
(
observations[i],
actions[i],
rewards[i],
masks[i],
dones_float[i],
next_observations[i],
)
)
if dones_float[i] == 1.0 and i + 1 < len(observations):
trajs.append([])
return trajs
def merge_trajectories(trajs):
observations = []
actions = []
rewards = []
masks = []
dones_float = []
next_observations = []
for traj in trajs:
for obs, act, rew, mask, done, next_obs in traj:
observations.append(obs)
actions.append(act)
rewards.append(rew)
masks.append(mask)
dones_float.append(done)
next_observations.append(next_obs)
return (
np.stack(observations),
np.stack(actions),
np.stack(rewards),
np.stack(masks),
np.stack(dones_float),
np.stack(next_observations),
)
class Dataset(object):
def __init__(
self,
observations: np.ndarray,
initial_observations: np.ndarray,
actions: np.ndarray,
rewards: np.ndarray,
masks: np.ndarray,
dones_float: np.ndarray,
next_observations: np.ndarray,
size: int,
):
self.observations = observations
self.initial_observations = initial_observations
self.actions = actions
self.rewards = rewards
self.masks = masks
self.dones_float = dones_float
self.next_observations = next_observations
self.size = size
self.initial_size = len(initial_observations)
# initial observation batch size?
def sample(self, batch_size: int) -> Batch:
initial_indx = np.random.randint(self.initial_size, size=batch_size)
indx = np.random.randint(self.size, size=batch_size)
return Batch(
initial_observations=self.initial_observations[initial_indx],
observations=self.observations[indx],
actions=self.actions[indx],
rewards=self.rewards[indx],
masks=self.masks[indx],
next_observations=self.next_observations[indx],
)
class D4RLDataset(Dataset):
def __init__(
self,
env: gym.Env,
add_env: gym.Env = "None",
expert_ratio: float = 1.0,
clip_to_eps: bool = True,
heavy_tail: bool = False,
heavy_tail_higher: float = 0.0,
eps: float = 1e-5,
):
dataset = d4rl.qlearning_dataset(env)
if add_env != "None":
add_data = d4rl.qlearning_dataset(add_env)
if expert_ratio >= 1:
raise ValueError("in the mix setting, the expert_ratio must < 1")
length_add_data = int(add_data["rewards"].shape[0] * (1 - expert_ratio))
length_expert_data = int(length_add_data * expert_ratio)
for k, _ in dataset.items():
dataset[k] = np.concatenate(
[
add_data[k][:-length_expert_data],
dataset[k][:length_expert_data],
],
axis=0,
)
print("-------------------------------")
print(
f"we are in the mix data regimes, len(expert):{length_expert_data} | len(add_data): {length_add_data} | expert ratio: {expert_ratio}"
)
print("-------------------------------")
if heavy_tail:
dataset = d4rl.qlearning_dataset(
env, heavy_tail=True, heavy_tail_higher=heavy_tail_higher
)
if clip_to_eps:
lim = 1 - eps
dataset["actions"] = np.clip(dataset["actions"], -lim, lim)
dones_float = np.zeros_like(dataset["rewards"])
# To get initial observations
initial_observations = [dataset['observations'][0].astype(np.float32)]
for i in range(len(dones_float) - 1):
if (
np.linalg.norm(
dataset["observations"][i + 1] - dataset["next_observations"][i]
)
> 1e-6
or dataset["terminals"][i] == 1.0
):
dones_float[i] = 1
# add initial observation at next step of done signal
if i < len(dones_float) - 1:
initial_observations.append(dataset['observations'][i+1].astype(np.float32))
else:
dones_float[i] = 0
dones_float[-1] = 1
super().__init__(
dataset["observations"].astype(np.float32),
initial_observations = np.array(initial_observations, dtype=np.float32),
actions=dataset["actions"].astype(np.float32),
rewards=dataset["rewards"].astype(np.float32),
masks=1.0 - dataset["terminals"].astype(np.float32),
dones_float=dones_float.astype(np.float32),
next_observations=dataset["next_observations"].astype(np.float32),
size=len(dataset["observations"]),
)
class ReplayBuffer(Dataset):
def __init__(
self, observation_space: gym.spaces.Box, action_dim: int, capacity: int
):
observations = np.empty(
(capacity, *observation_space.shape), dtype=observation_space.dtype
)
actions = np.empty((capacity, action_dim), dtype=np.float32)
rewards = np.empty((capacity,), dtype=np.float32)
masks = np.empty((capacity,), dtype=np.float32)
dones_float = np.empty((capacity,), dtype=np.float32)
next_observations = np.empty(
(capacity, *observation_space.shape), dtype=observation_space.dtype
)
super().__init__(
observations=observations,
actions=actions,
rewards=rewards,
masks=masks,
dones_float=dones_float,
next_observations=next_observations,
size=0,
)
self.size = 0
self.insert_index = 0
self.capacity = capacity
def initialize_with_dataset(self, dataset: Dataset, num_samples: Optional[int]):
assert (
self.insert_index == 0
), "Can insert a batch online in an empty replay buffer."
dataset_size = len(dataset.observations)
if num_samples is None:
num_samples = dataset_size
else:
num_samples = min(dataset_size, num_samples)
assert (
self.capacity >= num_samples
), "Dataset cannot be larger than the replay buffer capacity."
if num_samples < dataset_size:
perm = np.random.permutation(dataset_size)
indices = perm[:num_samples]
else:
indices = np.arange(num_samples)
self.observations[:num_samples] = dataset.observations[indices]
self.actions[:num_samples] = dataset.actions[indices]
self.rewards[:num_samples] = dataset.rewards[indices]
self.masks[:num_samples] = dataset.masks[indices]
self.dones_float[:num_samples] = dataset.dones_float[indices]
self.next_observations[:num_samples] = dataset.next_observations[indices]
self.insert_index = num_samples
self.size = num_samples
def insert(
self,
observation: np.ndarray,
action: np.ndarray,
reward: float,
mask: float,
done_float: float,
next_observation: np.ndarray,
):
self.observations[self.insert_index] = observation
self.actions[self.insert_index] = action
self.rewards[self.insert_index] = reward
self.masks[self.insert_index] = mask
self.dones_float[self.insert_index] = done_float
self.next_observations[self.insert_index] = next_observation
self.insert_index = (self.insert_index + 1) % self.capacity
self.size = min(self.size + 1, self.capacity)
def _gen_dir_name():
now_str = datetime.now().strftime("%m-%d-%y_%H.%M.%S")
rand_str = "".join(random.choices(string.ascii_lowercase, k=4))
return f"{now_str}_{rand_str}"
class Log:
def __init__(
self,
root_log_dir,
cfg_dict,
txt_filename="log.txt",
csv_filename="progress.csv",
cfg_filename="config.json",
flush=True,
):
self.dir = Path(root_log_dir) / _gen_dir_name()
self.dir.mkdir(parents=True)
self.txt_file = open(self.dir / txt_filename, "w")
self.csv_file = None
(self.dir / cfg_filename).write_text(json.dumps(cfg_dict))
self.txt_filename = txt_filename
self.csv_filename = csv_filename
self.cfg_filename = cfg_filename
self.flush = flush
def write(self, message, end="\n"):
now_str = datetime.now().strftime("%H:%M:%S")
message = f"[{now_str}] " + message
for f in [sys.stdout, self.txt_file]:
print(message, end=end, file=f, flush=self.flush)
def __call__(self, *args, **kwargs):
self.write(*args, **kwargs)
def row(self, dict):
if self.csv_file is None:
self.csv_file = open(self.dir / self.csv_filename, "w", newline="")
self.csv_writer = csv.DictWriter(self.csv_file, list(dict.keys()))
self.csv_writer.writeheader()
self(str(dict))
self.csv_writer.writerow(dict)
if self.flush:
self.csv_file.flush()
def close(self):
self.txt_file.close()
if self.csv_file is not None:
self.csv_file.close()