forked from facebookresearch/fairseq
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathbuild_offline_dataset.py
177 lines (154 loc) · 6.63 KB
/
build_offline_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
import os
import sys
import shutil
def main(cfg, out_dir, tgt_pfx, data_key="base"):
import ast
import logging
import numpy as np
import torch
from argparse import Namespace
import sacrebleu
from dataclasses import dataclass
from fairseq import utils, options, tasks, checkpoint_utils
from fairseq.data import Dictionary, data_utils, indexed_dataset, iterators
from fairseq.dataclass.utils import convert_namespace_to_omegaconf
from fairseq.file_io import PathManager
from fairseq.logging import progress_bar
output_bin = os.path.join(out_dir, f"{tgt_pfx}.bin")
output_idx = os.path.join(out_dir, f"{tgt_pfx}.idx")
score_bin = os.path.join(out_dir, "score.npy")
dataset_impl = "mmap"
if isinstance(cfg, Namespace):
cfg = convert_namespace_to_omegaconf(cfg)
cfg.dataset.gen_subset = "train"
logger = logging.getLogger("build_offline_dataset")
utils.import_user_module(cfg.common)
if cfg.dataset.max_tokens is None and cfg.dataset.batch_size is None:
cfg.dataset.max_tokens = 12000
logger.info(cfg)
if cfg.common.seed is not None and not cfg.generation.no_seed_provided:
np.random.seed(cfg.common.seed)
utils.set_torch_seed(cfg.common.seed)
use_cuda = torch.cuda.is_available() and not cfg.common.cpu
task = tasks.setup_task(cfg.task)
src_dict = task.source_dictionary
tgt_dict = task.target_dictionary
overrides = ast.literal_eval(cfg.common_eval.model_overrides)
logger.info("loading model(s) from {}".format(cfg.common_eval.path))
models, saved_cfg = checkpoint_utils.load_model_ensemble(
utils.split_paths(cfg.common_eval.path),
arg_overrides=overrides,
task=task,
suffix=cfg.checkpoint.checkpoint_suffix,
strict=(cfg.checkpoint.checkpoint_shard_count == 1),
num_shards=cfg.checkpoint.checkpoint_shard_count,
)
task.load_dataset(cfg.dataset.gen_subset, task_cfg=saved_cfg.task)
for model in models:
if cfg.common.fp16:
model.half()
if use_cuda and not cfg.distributed_training.pipeline_model_parallel:
model.cuda()
model.prepare_for_inference_(cfg)
if getattr(task.dataset(cfg.dataset.gen_subset), "datasets", None) is None:
dataset = task.dataset(cfg.dataset.gen_subset)
else:
dataset = task.dataset(cfg.dataset.gen_subset).datasets[data_key]
indices = np.arange(len(dataset), dtype=np.int64)
batch_sampler = dataset.batch_by_size(
indices, max_tokens=cfg.dataset.max_tokens, max_sentences=cfg.dataset.batch_size,
required_batch_size_multiple=cfg.dataset.required_batch_size_multiple)
itr = iterators.EpochBatchIterator(
dataset=dataset,
collate_fn=dataset.collater,
batch_sampler=batch_sampler,
seed=cfg.common.seed,
num_shards=cfg.distributed_training.distributed_world_size,
shard_id=cfg.distributed_training.distributed_rank,
num_workers=cfg.dataset.num_workers,
epoch=1,
buffer_size=cfg.dataset.data_buffer_size,
).next_epoch_itr(shuffle=False)
progress = progress_bar.progress_bar(
itr,
log_format=cfg.common.log_format,
log_interval=cfg.common.log_interval,
default_log_format=("tqdm" if not cfg.common.no_progress_bar else "simple"),
)
generator = task.build_generator(models, cfg.generation)
sample_ds = indexed_dataset.make_builder(
output_bin, impl=dataset_impl, vocab_size=len(tgt_dict)
)
def decode(toks, is_hyp=True):
if not is_hyp:
toks = utils.strip_pad(toks, tgt_dict.pad())
s = tgt_dict.string(toks.int().cpu(), task.cfg.eval_bleu_remove_bpe,
unk_string=("UNKNOWNTOKENINHYP" if is_hyp else "UNKNOWNTOKENINREF"))
if task.tokenizer:
s = task.tokenizer.decode(s)
return s
def get_rewards(hypos, targets):
rewards = []
for hypo, rtarget in zip(hypos, targets):
ref = decode(rtarget, is_hyp=False)
hyp = decode(hypo)
if task.cfg.eval_tokenized_bleu:
rewards.append(sacrebleu.corpus_bleu([hyp], [[ref]], tokenize="none").score)
else:
rewards.append(sacrebleu.corpus_bleu([hyp], [[ref]]).score)
return rewards
scores = []
for sample in progress:
sample = utils.move_to_cuda(sample) if use_cuda else sample
if "net_input" not in sample:
sample = sample[data_key]
sorted_ind = sample["id"].sort().indices
hypos = task.inference_step(generator, models, sample)
sorted_hypo_tokens = [hypos[ind][0]["tokens"].cpu() for ind in sorted_ind]
sorted_targets = sample["target"][sorted_ind]
scores += get_rewards(sorted_hypo_tokens, sorted_targets)
for hypo in sorted_hypo_tokens:
sample_ds.add_item(hypo)
print("average_scores: ", np.average(scores))
sample_ds.finalize(output_idx)
np.save(score_bin, np.array(scores))
return np.average(scores)
def get_cfg_and_run(seed, epoch="_best", model="baseline_wmt"):
from fairseq import options
OUT_DIR = f"data-bin/wmt17.iwslt.offline_{model}{epoch}.{seed}.en-de"
SRC_PFX = "train.en-de.en"
TGT_PFX = "train.en-de.de"
BASE_DIR = "/home/bjlee/mtrl_exps/"
BASE_DATA_DIR = "data-bin/wmt17.en-de.iwslt"
BASE_TEST_ARGS = [
BASE_DATA_DIR,
"--batch-size", "128",
"--beam", "5",
"--remove-bpe",
"--eval-bleu",
"--eval-bleu-args", '{"beam": 5, "max_len_a": 1.2, "max_len_b": 10}',
"--eval-bleu-detok", "moses",
"--eval-bleu-remove-bpe",
"--eval-bleu-print-samples",
"--seed", str(seed),
"--task", "translation",
"--path", os.path.join(BASE_DIR, model, str(seed), f"checkpoint{epoch}.pt")
]
sys.argv = [sys.argv[0]] + BASE_TEST_ARGS
parser = options.get_generation_parser()
args = options.parse_args_and_arch(parser)
assert not os.path.exists(OUT_DIR), f"{OUT_DIR} already exists!"
os.makedirs(OUT_DIR, exist_ok=True)
files_to_copy = ["dict.de.txt", "dict.en.txt", f"{SRC_PFX}.bin", f"{SRC_PFX}.idx"]
for fname in files_to_copy:
shutil.copy(
os.path.join(BASE_DATA_DIR, fname),
os.path.join(OUT_DIR, fname))
return main(args, out_dir=OUT_DIR, tgt_pfx=TGT_PFX)
if __name__ == "__main__":
argv = sys.argv[1]
os.environ["CUDA_VISIBLE_DEVICES"] = argv
r1 = get_cfg_and_run(100 + int(argv), model="baseline_wmt")
sys.argv = [sys.argv[0], argv]
r2 = get_cfg_and_run(100 + int(argv), model="su_adapt")
print(r1, r2)