-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathrenderer.py
executable file
·202 lines (157 loc) · 7.85 KB
/
renderer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
import torch,os,imageio,sys
from tqdm.auto import tqdm
from dataLoader.ray_utils import get_rays
from models.tensoRF import TensorVM, TensorCP, raw2alpha, TensorVMSplit, AlphaGridMask
from utils import *
from dataLoader.ray_utils import ndc_rays_blender
import torchvision.transforms as transforms
from pytorch_wavelets import DWTInverse, DWTForward
from models.attack import Attacker
# renderer
def OctreeRender_trilinear_fast(rays, tensorf, chunk=4096, N_samples=-1, ndc_ray=False, white_bg=True, is_train=False, device='cuda'):
rgbs, alphas, depth_map, weights, uncertainties = [], [], [], [], []
N_rays_all = rays.shape[0]
for chunk_idx in range(N_rays_all // chunk + int(N_rays_all % chunk > 0)):
rays_chunk = rays[chunk_idx * chunk:(chunk_idx + 1) * chunk].to(device)
rgb_map, _ = tensorf(rays_chunk, is_train=is_train, white_bg=white_bg, ndc_ray=ndc_ray, N_samples=N_samples)
rgbs.append(rgb_map)
# depth_maps.append(depth_map)
return torch.cat(rgbs), None, None, None, None
def bit_acc(decoded, keys):
diff = (~torch.logical_xor(decoded>0, keys>0)) # b k -> b k
bit_accs = torch.sum(diff, dim=-1) / diff.shape[-1] # b k -> b
return bit_accs
@torch.no_grad()
def evaluation(test_dataset, tensorf, msg_decoder, key, args, renderer, savePath=None, N_vis=-1, prtx='', N_samples=-1,
white_bg=False, ndc_ray=False, compute_extra_metrics=True, device='cuda'):
PSNRs, rgb_maps = [], []
ssims, l_alex, l_vgg, bit_acc_list = [], [], [], []
os.makedirs(savePath, exist_ok=True)
try:
tqdm._instances.clear()
except Exception:
pass
img_eval_interval = 1 if N_vis < 0 else max(test_dataset.all_rays.shape[0] // N_vis, 1)
idxs = list(range(0, test_dataset.all_rays.shape[0], img_eval_interval))
for idx, samples in tqdm(enumerate(test_dataset.all_rays[0::img_eval_interval]), file=sys.stdout):
W, H = test_dataset.img_wh
rays = samples.view(-1, samples.shape[-1])
rgb_map, _, _, _, _ = renderer(rays, tensorf, chunk=4096, N_samples=N_samples,
ndc_ray=ndc_ray, white_bg=white_bg, device=device)
rgb_map_for_decoder = rgb_map.view(H, W, 3).permute(2, 0, 1).unsqueeze(0).contiguous().to(device)
rgb_map = rgb_map.clamp(0.0, 1.0)
rgb_map = rgb_map.reshape(H, W, 3).cpu()
if len(test_dataset.all_rgbs):
gt_rgb = test_dataset.all_rgbs[idxs[idx]].view(H, W, 3)
loss = torch.mean((rgb_map - gt_rgb) ** 2)
PSNRs.append(-10.0 * np.log(loss.item()) / np.log(10.0))
if compute_extra_metrics:
ssim = rgb_ssim(rgb_map, gt_rgb, 1)
l_a = rgb_lpips(gt_rgb.numpy(), rgb_map.numpy(), 'alex', tensorf.device)
l_v = rgb_lpips(gt_rgb.numpy(), rgb_map.numpy(), 'vgg', tensorf.device)
yl, yh = DWTForward(wave='bior4.4', J=2, mode='periodization').to(rgb_map_for_decoder.device)(rgb_map_for_decoder)
decoded = msg_decoder(yl) # b c h w -> b k
bit_accuracy = bit_acc(decoded, key).item()
bit_acc_list.append(bit_accuracy)
ssims.append(ssim)
l_alex.append(l_a)
l_vgg.append(l_v)
rgb_map = (rgb_map.numpy() * 255).astype('uint8')
rgb_maps.append(rgb_map)
if savePath is not None:
imageio.imwrite(f'{savePath}/{prtx}{idx:03d}.png', rgb_map)
# imageio.mimwrite(f'{savePath}/{prtx}video.mp4', np.stack(rgb_maps), fps=30, quality=10)
if PSNRs:
psnr = np.mean(np.asarray(PSNRs))
if compute_extra_metrics:
ssim = np.mean(np.asarray(ssims))
l_a = np.mean(np.asarray(l_alex))
l_v = np.mean(np.asarray(l_vgg))
bit_acc_ = np.mean(np.asarray(bit_acc_list))
np.savetxt(f'{savePath}/{prtx}mean.txt', np.asarray([psnr, ssim, l_a, l_v, bit_acc_]))
else:
np.savetxt(f'{savePath}/{prtx}mean.txt', np.asarray([psnr]))
return PSNRs
@torch.no_grad()
def evaluation_path(test_dataset, tensorf, c2ws, renderer, savePath=None, N_vis=-1, prtx='', N_samples=-1,
white_bg=False, ndc_ray=False, compute_extra_metrics=True, device='cuda'):
PSNRs, rgb_maps = [], []
ssims, l_alex, l_vgg = [], [], []
os.makedirs(savePath, exist_ok=True)
try:
tqdm._instances.clear()
except Exception:
pass
for idx, c2w in tqdm(enumerate(c2ws)):
W, H = test_dataset.img_wh
c2w = torch.FloatTensor(c2w)
rays_o, rays_d = get_rays(test_dataset.directions, c2w) # both (h*w, 3)
if ndc_ray:
rays_o, rays_d = ndc_rays_blender(H, W, test_dataset.focal[0], 1.0, rays_o, rays_d)
rays = torch.cat([rays_o, rays_d], 1) # (h*w, 6)
rgb_map, _, _, _, _ = renderer(rays, tensorf, chunk=8192, N_samples=N_samples,
ndc_ray=ndc_ray, white_bg=white_bg, device=device)
rgb_map = rgb_map.clamp(0.0, 1.0)
rgb_map = rgb_map.reshape(H, W, 3).cpu()
rgb_map = (rgb_map.numpy() * 255).astype('uint8')
rgb_maps.append(rgb_map)
if savePath is not None:
imageio.imwrite(f'{savePath}/{prtx}{idx:03d}.png', rgb_map)
imageio.mimwrite(f'{savePath}/{prtx}video.mp4', np.stack(rgb_maps), fps=30, quality=8)
if PSNRs:
psnr = np.mean(np.asarray(PSNRs))
if compute_extra_metrics:
ssim = np.mean(np.asarray(ssims))
l_a = np.mean(np.asarray(l_alex))
l_v = np.mean(np.asarray(l_vgg))
np.savetxt(f'{savePath}/{prtx}mean.txt', np.asarray([psnr, ssim, l_a, l_v]))
else:
np.savetxt(f'{savePath}/{prtx}mean.txt', np.asarray([psnr]))
return PSNRs
def evaluation_bit_accuracy(render_path, msg_decoder, key):
transform_imnet = transforms.Compose([
transforms.ToTensor(),
# transforms.Normalize(mean=[0.485, 0.456, 0.406],std=[0.229, 0.224, 0.225])
])
img_list = os.listdir(render_path)
bit_acc_list = []
for img_id in img_list:
try:
img = Image.open(render_path + img_id)
img = transform_imnet(img).unsqueeze(0).to("cuda")
except:
continue
yl, yh = DWTForward(wave='bior4.4', J=2, mode='periodization').to(img.device)(img)
decoded = msg_decoder(yl) # b c h w -> b k
bit_accuracy = bit_acc(decoded, key).item()
# print("Bit accuracy: ", bit_acc)
bit_acc_list.append(bit_accuracy)
return np.mean(bit_acc_list)
def evalutaion_attack_bit_accuracy(render_path, msg_decoder, key, renderer, savePath=None, device='cuda'):
transform_imnet = transforms.Compose([
transforms.ToTensor(),
])
attack_bit_acc_result = []
att = Attacker()
attack_type = ['Blur','Rotate', 'Crop', 'Resize', 'noise', 'JPEG_Compression']
img_list = os.listdir(render_path)
for idx, item in enumerate(attack_type):
total_bit_acc = 0
total_img_num = 0
result_dict = {}
for img_id in img_list:
try:
img = Image.open(render_path + img_id)
except:
continue
attacked_image = att(img,idx)
tensored_img = transform_imnet(attacked_image).unsqueeze(0).contiguous().to(device)
yl, yh = DWTForward(wave='bior4.4', J=2, mode='periodization').to(tensored_img.device)(tensored_img)
decoded = msg_decoder(yl)
total_bit_acc += bit_acc(decoded, key).item()
total_img_num += 1
result_dict['Attack_Type'] = item
result_dict['bit_acc'] = (total_bit_acc / total_img_num)
attack_bit_acc_result.append(result_dict)
np.savetxt(f'{savePath}/attack_bit_acc_mean.txt',np.asarray(attack_bit_acc_result),fmt='%s')
# return attack_bit_acc_result