-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
399 lines (317 loc) · 14.8 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
import math
import torch
import torch.nn as nn
class InputEmbedding(nn.Module):
# d_model: represents the model size; 512
# given a number we want to get the same vector every time, this is what embedding does
# - its mapping between numbers and vector of size 512 (in this case)
def __init__(self, d_model: int, vocab_size: int):
super().__init__()
self.d_model = d_model
self.vocab_size = vocab_size
self.embedding = nn.Embedding(
vocab_size, d_model
) # a form of dictionary: maps numbers to a same vector every time; this vector is learnt by the model
def forward(self, x):
return self.embedding(x) * math.sqrt(self.d_model) # this is from the paper
class PositionalEncoding(nn.Module):
def __init__(self, d_model: int, seq_len: int, dropout: float) -> None:
super().__init__()
self.d_model = d_model # size of the embedding model: 512
self.seq_len = seq_len # maximum length of the sentence
self.dropout = nn.Dropout(dropout) # makes the model overfit less
# we will need vectors of seq_len * d_model. (we will need 512 rows and seq_len columns)
pe = torch.zeros(seq_len, d_model)
# create a vector of shame (seq_len, 1)
position = torch.arange(0, seq_len, dtype=torch.float).unsqueeze(
1
) # corresponds to pos in the formula
# create denominator of the formula
div_term = torch.exp(
torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model)
) # corresponds with the dividing part of the formula
# Apply the sin to even positions and cos to odd positions.
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
# now we must add the batch dimension to this tensor so that we can apply it to the whole sentences
pe = pe.unsqueeze(0) # (1, seq_len, d_model)
# we register it as a buffer so that it gets saved from the tensor along with the state of the model.
# otherwise this would be lost.
self.register_buffer("pe", pe)
# Add positional encoding to the input embeddings and apply dropout to the result.
# allows the model to learn positional information while preventing overfitting.
def forward(self, x):
x = x + (self.pe[:, : x.shape[1], :]).requires_grad_(False)
return self.dropout(x)
class LayerNormalization(nn.Module):
# alfa/gamma is multiplied
# beta/bias is added
def __init__(self, eps: float = 10**-6) -> None:
super().__init__()
self.eps = eps
self.alpha = nn.Parameter(torch.ones(1)) # multiplied
self.bias = nn.Parameter(torch.zeros(1)) # added
def forward(self, x):
mean = x.mean(dim=-1, keepdim=True)
std = x.std(dim=-1, keepdim=True)
return self.alpha * (x - mean) / (std * self.eps) + self.bias
class FeedForwardBlock(nn.Module):
def __init__(self, d_model: int, d_ff: int, dropout: float) -> None:
super().__init__()
self.linear_1 = nn.Linear(d_model, d_ff) # W1 and B1
self.dropout = nn.Dropout(dropout)
self.linear_2 = nn.Linear(d_ff, d_model) # W2 and B2
def forward(self, x):
# (Batch, seq_len, d_model) -> (Batch, seq_len, d_ff) -> (Batch, seq_len, d_model)
return self.linear_2(self.dropout(torch.relu(self.linear_1(x))))
class MultiHeadAttentionBlock(nn.Module):
def __init__(self, d_model: int, h: int, dropout: float) -> None:
super().__init__()
self.d_model = d_model
self.h = h
# we need to make sure that the d_model is devisible by h
assert d_model % h == 0, "d_model is not divisible by h"
self.d_k = d_model // h
# define matrixes in which we will store w, q, k, v
self.w_q = nn.Linear(d_model, d_model) # Wq
self.w_k = nn.Linear(d_model, d_model) # Wk
self.w_v = nn.Linear(d_model, d_model) # Wv
self.w_o = nn.Linear(d_model, d_model) # Wo
self.dropout = nn.Dropout(dropout)
@staticmethod
def attention(query, key, value, mask, dropout: nn.Dropout):
d_k = query.shape[-1]
# (Batch, h, seq_len, d_k) -> (Batch, h, seq_len, seq_len)
attention_scores = (query @ key.transpose(-2, -1)) / math.sqrt(d_k)
# before applyind the softmax, we apply the mask so that the softmax can later replace the values with 0
# we mask all the words that we want to hide (e.g padding values)
if mask is not None:
attention_scores.masked_fill_(mask == 0, -1e9)
attention_scores = attention_scores.softmax(
dim=-1
) # (Batch, h, seq_len, seq_len)
if dropout is not None:
attention_scores = dropout(attention_scores)
# we will also use the second part of the return for visualisation of the attention
return (attention_scores @ value), attention_scores
def forward(self, q, k, v, mask):
# mask helps by hiding some words so that the model does not interact with them
# we do it by setting their values to something small before it goes to the softmax
# after small values go thorugh the softmax they become 0.
query = self.w_q(q) # (Batch, seq_len, d_model) -> (Batch, seq_len, d_model)
key = self.w_k(k) # (Batch, seq_len, d_model) -> (Batch, seq_len, d_model)
value = self.w_v(v) # (Batch, seq_len, d_model) -> (Batch, seq_len, d_model)
# devide them to smaller matixes so that we have the heads
# we keep the batch dimesion, because we dont want to split the sentence. We want to split the embeddings into h parts.
# we want to keep the seq dim
# we want to split the d_model into 2 smaller dimension which is h,d_k
# we transpose because we want the h dimension to be 2nd dimension instead the 3rd
# This way each head sees the entire sentence (query.shape[1], d_k)
# (Batch, seq_len, d_model) -> (Batch, seq_len, h, d_k) -> (Batch, h, seq_len, d_k)
# each head will see each word in the sentence but a smaller part of the embeddings
query = query.view(query.shape[0], query.shape[1], self.h, self.d_k).transpose(
1, 2
)
key = key.view(key.shape[0], key.shape[1], self.h, self.d_k).transpose(1, 2)
value = value.view(value.shape[0], value.shape[1], self.h, self.d_k).transpose(
1, 2
)
# Now we need to calculate the attention using the attention formula
x, self.attention_scores = MultiHeadAttentionBlock.attention(
query, key, value, mask, self.dropout
)
# (Batch, h, seq_len, d_k) -> (Batch, seq_len, h, d_k) -> (Batch, seq_len, d_model)
# self.h * self.d_k = d_model because how we defined self.d_k = d_model // h
x = x.transpose(1, 2).contiguous().view(x.shape[0], -1, self.h * self.d_k)
# multiply x by Wo which is our output matix
return self.w_o(x)
# Now we need to build the connection which will go from add & norm and go to the other add & norm skipping Feed Forward.
class ResidualConnection(nn.Module):
def __init__(self, dropout: float) -> None:
super().__init__()
self.dropout = nn.Dropout(dropout)
self.norm = LayerNormalization()
def forward(self, x, sublayer):
# in the paper Attetion is all you need, they first apply the sublayer and then the norm however both work
return x + self.dropout(sublayer(self.norm(x)))
# All of the sublayers is combined into a bigger block which is repeated N times. That combining block is called the Encoder block.
# where the output of the preveous block is sent to the next one and the output of the last encoder block is sent to the Decoder.
class EncoderBlock(nn.Module):
def __init__(
self,
self_attention_block: MultiHeadAttentionBlock,
feed_forward_block: FeedForwardBlock,
dropout: float,
) -> None:
super().__init__()
self.self_attention_block = self_attention_block
self.feed_forward_block = feed_forward_block
# 2 residual (skip) conections
self.residual_connections = nn.ModuleList(
[ResidualConnection(dropout) for _ in range(2)]
)
def forward(self, x, src_mask):
# apply the mask so that padding words dont interract with the model.
# for the first residual connection we send the intput to the MultiHeadAttentionBlock and also skip right to the Add & LayerNormalization
x = self.residual_connections[0](
x, lambda x: self.self_attention_block(x, x, x, src_mask)
)
# feed worward
x = self.residual_connections[1](x, self.feed_forward_block)
# what this does is combines the feed forward and X (output of the preveous layer) then apply ResidualConnection
# all of the above defines our Encoder block.
return x
class Encoder(nn.Module):
def __init__(self, layers: nn.ModuleList) -> None:
"""
Initializes the Encoder with a list of layers and a LayerNormalization instance.
Args:
layers (nn.ModuleList): A list of encoder layers.
"""
super().__init__()
self.layers = layers
self.norm = LayerNormalization()
def forward(self, x, mask):
"""
Defines the forward pass of the Encoder.
Args:
x: Input tensor.
mask: Mask tensor to prevent attention to certain positions.
Returns:
Tensor: The normalized output tensor after processing through all layers.
"""
for layer in self.layers:
x = layer(x, mask)
return self.norm(x)
class DecoderBlock(nn.Module):
def __init__(
self,
self_attention_block: MultiHeadAttentionBlock,
cross_attention_block: MultiHeadAttentionBlock,
feed_forward_block: FeedForwardBlock,
dropout: float,
) -> None:
super().__init__()
self.self_attention_block = self_attention_block
self.cross_attention_block = cross_attention_block
self.feed_forward_block = feed_forward_block
self.dropout = dropout
self.residual_connections = nn.ModuleList(
[ResidualConnection(dropout) for _ in range(3)]
)
def forward(self, x, encoder_output, src_mask, trg_mask):
# we have two seperate masks because we are dealing with a translation task.
# one mask is for the source language, e.g English and the other e.g Italian.
x = self.residual_connections[0](
x, lambda x: self.self_attention_block(x, x, x, trg_mask)
)
# cross attention which is the second residal connection
x = self.residual_connections[1](
x,
lambda x: self.cross_attention_block(
x, encoder_output, encoder_output, src_mask
),
)
x = self.residual_connections[2](x, self.feed_forward_block)
return x
class Decoder(nn.Module):
def __init__(self, layers: nn.ModuleList) -> None:
super().__init__()
self.layers = layers
self.norm = LayerNormalization()
def forward(self, x, encoder_output, src_mask, trg_mask):
for layer in self.layers:
x = layer(x, encoder_output, src_mask, trg_mask)
return self.norm(x)
class ProjectionLayer(nn.Module):
def __init__(self, d_model: int, vocab_size: int) -> None:
super().__init__()
self.project = nn.Linear(d_model, vocab_size)
def forward(self, x):
# (Batch, seq_len, d_model) -> (Batch, seq_len, vocab_size)
return torch.log_softmax(self.project(x), dim=-1)
class Transformer(nn.Module):
def __init__(
self,
encoder: Encoder,
decoder: Decoder,
src_embed: InputEmbedding,
tgt_embed: InputEmbedding,
src_pos: PositionalEncoding,
tgt_pos: PositionalEncoding,
projection_layer: ProjectionLayer,
) -> None:
super().__init__()
self.encoder = encoder
self.decoder = decoder
self.src_embed = src_embed
self.tgt_embed = tgt_embed
self.src_pos = src_pos
self.tgt_pos = tgt_pos
self.projection_layer = projection_layer
# define 3 methods, encode, decode and project.
def encode(self, src, src_mask):
src = self.src_embed(src)
src = self.src_pos(src)
return self.encoder(src, src_mask)
def decode(self, encoder_output, src_mask, tgt, trg_mask):
tgt = self.tgt_embed(tgt)
tgt = self.tgt_pos(tgt)
return self.decoder(tgt, encoder_output, src_mask, trg_mask)
def project(self, x):
return self.projection_layer(x)
# the naming is based of the translation task this model will be used for however this transformer can be used for any other taks,
# we can change the naming convention below for clarity.
def build_transformer(
src_vocab_size: int,
tgt_vocab_size: int,
src_seq_len: int,
tgt_seq_len: int,
d_model: int = 512,
N: int = 6,
h: int = 8,
dropout: float = 0.1,
d_ff: int = 2048,
) -> Transformer:
# create the embedding layers
src_embed = InputEmbedding(d_model, src_vocab_size)
tgt_embed = InputEmbedding(d_model, tgt_vocab_size)
# creathe the positional encoding layers
src_pos = PositionalEncoding(d_model, src_seq_len, dropout)
tgt_pos = PositionalEncoding(d_model, tgt_seq_len, dropout)
# create the encoder blocks
encoder_blocks = []
for _ in range(N):
encoder_self_attention_block = MultiHeadAttentionBlock(d_model, h, dropout)
feed_forward_block = FeedForwardBlock(d_model, d_ff, dropout)
encoder_block = EncoderBlock(
encoder_self_attention_block, feed_forward_block, dropout
)
encoder_blocks.append(encoder_block)
# create the decoder blocks
decoder_blocks = []
for _ in range(N):
decoder_self_attendion_block = MultiHeadAttentionBlock(d_model, h, dropout)
decoder_cross_attention_block = MultiHeadAttentionBlock(d_model, h, dropout)
feed_forward_block = FeedForwardBlock(d_model, d_ff, dropout)
decoder_block = DecoderBlock(
decoder_self_attendion_block,
decoder_cross_attention_block,
feed_forward_block,
dropout,
)
decoder_blocks.append(decoder_block)
# create the encoder and the decoder
encoder = Encoder(nn.ModuleList(encoder_blocks))
decoder = Decoder(nn.ModuleList(decoder_blocks))
# create the projection layer
projection_layer = ProjectionLayer(d_model, tgt_vocab_size)
# create the transformer
transformer = Transformer(
encoder, decoder, src_embed, tgt_embed, src_pos, tgt_pos, projection_layer
)
# Initializes the parameters with random values
for p in transformer.parameters():
if p.dim() > 1:
nn.init.xavier_uniform_(p)
return transformer