Skip to content

Latest commit

 

History

History
259 lines (212 loc) · 6.59 KB

README.md

File metadata and controls

259 lines (212 loc) · 6.59 KB

zekrom for arkworks-rs

zekr0m

zekrom is an open-source library of arithmetization-oriented constructions for zkSNARK circuits. It was created as part of the MSc thesis work of Laurent Thoeny at Kudelski Research. The goal of zekrom is to analyze the performance of novel constructions for circuits using modern libraries such as arkworks-rs and halo2.

zekrom for arkworks-rs supports the following constructions for hashing:

and the follow constuctions for performing authenticated-encryption:

zekrom was presented at Pass the Salt 2023 and appeared at https://research.kudelskisecurity.com/2023/05/30/presenting-zekrom-a-library-of-arithmetization-oriented-constructions-for-zksnark-circuits-part-1-arkworks-rs/

You can download the slides we used at https://cfp.pass-the-salt.org/media/pts2023/submissions/LQ7RVH/resources/PTS2023-Talk-17-zekrom_b2rCSlW.pdf

Caution: zekrom is under heavy development and it has not been audited by a third party.

Running the tests

You can run the tests for each implementation via cargo test. They use both the Groth16 and Marlin proving systems.

Generating new parameters

Typically, arithmetization-oriented constructions require to generate different parameters prior to implementation and deployment of the primitive. In order to help practitioners to generate them, we have added different helper functions in parameters.sage.

  1. Griffin

The round constants, alpha and beta parameters for a prime p can be obtained via:

def get_params_griffin(p, seed, m, n):
    shake = SHAKE128.new()
    shake.update(bytes("Griffin", "ascii"))
    for v in seed:
        shake.update(bytes(v));
    consts = get_n_random_elements(p, n*m, shake)
    alpha, beta = get_alpha_beta(p, shake)
    return alpha, beta, consts
  1. Neptune

The round constants for Neptune for a prime p, can be obtained via:

def get_round_constants_neptune(p, seed, m, n):
    shake = SHAKE128.new()
    shake.update(bytes("Neptune", "ascii"))
    for v in seed:
        shake.update(bytes(v))
    consts = get_n_random_elements(p, n*m, shake)
    gamma = get_random_element(p, shake)
    int_matrix = get_n_random_elements(p, m, shake)
    return consts, gamma, int_matrix

Further, the number of external and internal rounds for a power map exponent d, a prime p, t field elements and s security level can be obtained via:

def get_nb_rounds_neptune(d, p, t, s):
    re = 6    
    ri_p_1 = ceil((min(s, math.log(p,2)) - 6)/math.log(d, 2) + 3 + t + log(t, d))
    ri_p_2 = ceil((s/2) - 4*t - 2)
    
    return re, ceil(1.125 * max(ri_p_1, ri_p_2))
  1. Ciminion

The round constants for n rounds Ciminion can be obtained via:

def get_round_constants_ciminion(p, n):
    shake = SHAKE256.new()
    shake.update(bytes(f"GF({p})", "ascii"))
    return get_n_random_elements(p, 4*n, shake, True)
  1. Rescue Prime

The round constants can be generated for a prime p, sponge capacity, security level and n rounds via:

def get_round_constants_rescue(p, m, capacity, security_level, n):
    shake = SHAKE256.new()
    shake.update(bytes("Rescue-XLIX (%i,%i,%i,%i)" % (p, m, capacity, security_level), "ascii"))
    return get_n_random_elements(p, m*n, shake)

The number of rounds can be estimated via:

def get_number_of_rounds_rescue(p, m, c, s, d):
    r = m - c
    def dcon(N): return floor(0.5 * (d-1) * m * (N-1) + 2)
    def v(N): return m*(N-1)+r
    target = 2 ** s
    for l1 in range(1, 25):
        if binomial(v(l1) + dcon(l1), v(l1)) ** 2 > target:
            break
    return ceil(1.5*max(5, l1))

Number of constraints (R1CS, BLS-12-381)

In order to analyze the performance of our implementations, we have obtained the number of required R1CS constraints for each construction. This can be visualized, according to the number of field elements in the message in each test, via cargo test, for instance:

cargo test rescue_prime::tests::groth16_bls381 -- --nocapture

Ciminion AE

No. of field elements No. of R1CS Constraints
1 4236
2 4243
3 5692
4 5695
5 7145
10 10062
15 14434
20 17343
30 24640
40 31905
50 39170
60 46435
70 53764
80 61029
90 68294
100 75559

Griffin Hash

No. of field elements No. of R1CS Constraints
1 4682
2 9365
3 14048
4 18731
5 23414
10 46829
15 70244
20 93659
30 140489
40 187319
50 234149
60 280979
70 327809
80 374639
90 421469
100 468299

Griffin AE

No. of field elements No. of R1CS Constraints
1 14049
2 18736
3 23419
4 28102
5 32785
10 60891
15 84322
20 107737
30 154599
40 201429
50 248259
60 295089
70 341983
80 388813
90 435643
100 482473

Neptune Hash

No. of field elements No. of R1CS Constraints
1 622
2 1251
3 1880
4 2509
5 3138
10 6283
15 9428
20 12573
30 18863
40 25153
50 31443
60 37733
70 44023
80 50313
90 56603
100 62893

Neptune AE

No. of field elements No. of R1CS Constraints
1 1882
2 2516
3 3146
4 3776
5 4406
10 7564
15 10730
20 13880
30 20212
40 26512
50 32812
60 39112
70 45476
80 51776
90 58076
100 64376

Rescue Prime Hash

No. of field elements No. of R1CS Constraints
1 16249
2 32504
3 48759
4 65014
5 81269
10 162544
15 243819
20 325094
30 487644
40 568919
50 812744
60 975294
70 1137844
80 1300394
90 1462944
100 1625494

Summary

zekr0m zekr0m