-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain_mnli_llmtune_label.py
277 lines (226 loc) · 8.71 KB
/
train_mnli_llmtune_label.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
import argparse
# Set up the argument parser
parser = argparse.ArgumentParser(description='Python script to work with models')
parser.add_argument('--model_name', type=str, help='Name of the model', required=True)
parser.add_argument('--weight_path', type=str, help='Path to the weights', required=True)
parser.add_argument('--adapter', type=str, help='Path to store adapter weight', required=True)
parser.add_argument('--mbatch_size', type=int, help='mbatch size for training', required=True)
parser.add_argument('--seed', type=int, help='model seed number', required=True)
# Parse the arguments
args = parser.parse_args()
# Use the command line arguments in your script
print('Model Name:', args.model_name)
print('Weight Path:', args.weight_path)
print('Adapter Path: ', args.adapter)
print('Seed: ', args.seed)
print('mbatch_size: ', args.mbatch_size)
import random
import json
import os
# import wandb
import torch
import numpy as np
import bitsandbytes as bnb
from tqdm import tqdm
import transformers
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, AutoModelForCausalLM, DataCollatorForTokenClassification, DataCollatorForSeq2Seq
from transformers import Trainer, TrainingArguments, logging, TrainerCallback, TrainerState, TrainerControl, BitsAndBytesConfig
from transformers.trainer_utils import PREFIX_CHECKPOINT_DIR
from peft import get_peft_model, LoraConfig, prepare_model_for_int8_training
from datasets import load_dataset
# from src.dataset import InstructDataset, ChatDataset
# from src.util.dl import set_random_seed, fix_tokenizer, fix_model
# from src.util.io import read_jsonl
from utils import *
from data_mnli_label import *
from llmtune.executor import load_llm, load_adapter
from llmtune.engine.lora.peft import quant_peft
# os.environ["WANDB_LOG_MODEL"] = "checkpoint"
os.environ["WANDB_DISABLED"] = "true"
os.environ["TOKENIZERS_PARALLELISM"] = "false"
class SavePeftModelCallback(TrainerCallback):
def on_save(
self,
args: TrainingArguments,
state: TrainerState,
control: TrainerControl,
**kwargs,
):
checkpoint_folder = os.path.join(
args.output_dir, f"{PREFIX_CHECKPOINT_DIR}-{state.global_step}"
)
peft_model_path = os.path.join(checkpoint_folder, "adapter_model")
kwargs["model"].save_pretrained(peft_model_path)
return control
checkpoint = None
seed = args.seed
train_sample_rate = 1.0
val_sample_rate = 1.0
local_rank = 0
# report_to = "wandb"
output_dir = args.adapter
set_random_seed(seed)
logging.set_verbosity_info()
# with open(config_file, "r") as r:
# config = json.load(r)
device_map = "auto"
world_size = int(os.environ.get("WORLD_SIZE", 1))
ddp = world_size != 1
if ddp:
device_map = {"": int(os.environ.get("LOCAL_RANK") or 0)}
gradient_accumulation_steps = gradient_accumulation_steps // world_size
#deepspeed_config = config.get("deepspeed")
### Training Configuration
#trainer_config = config["trainer"]
MICRO_BATCH_SIZE = args.mbatch_size # this could actually be 5 but i like powers of 2
BATCH_SIZE = 256
GRADIENT_ACCUMULATION_STEPS = BATCH_SIZE // MICRO_BATCH_SIZE
EPOCHS = 1 # we don't need 3 tbh
LEARNING_RATE = 1e-3 # the Karpathy constant
CUTOFF_LEN = 128 # 128 accounts for about 95% of the data
LORA_R = 8
LORA_ALPHA = 16
LORA_DROPOUT = 0.05
VAL_SET_SIZE= 2000
def preprocess_logits_for_metrics(logits, labels):
"""
Original Trainer may have a memory leak.
This is a workaround to avoid storing too many tensors that are not needed.
"""
pred_ids = torch.argmax(logits[0], dim=-1)
return pred_ids, labels
trainer_config = transformers.TrainingArguments(
per_device_train_batch_size = MICRO_BATCH_SIZE,
per_device_eval_batch_size = MICRO_BATCH_SIZE,
gradient_accumulation_steps=GRADIENT_ACCUMULATION_STEPS,
warmup_ratio=0.06,
num_train_epochs=EPOCHS,
# max_steps = 350,
learning_rate=LEARNING_RATE,
lr_scheduler_type = "cosine", ## LoRA original paper uses linear
fp16=True,
logging_steps=150,
evaluation_strategy="steps",
logging_strategy="steps",
save_strategy="steps",
eval_steps=300,
save_steps=300,
# report_to=report_to,
output_dir=output_dir,
optim = "adamw_torch",
torch_compile = False,
save_total_limit=2,
load_best_model_at_end=True,
ddp_find_unused_parameters=False if ddp else None,
)
# ### Apply LoRA
#
# Here comes the magic with `peft`! Let's load a `PeftModel` and specify that we are going to use low-rank adapters (LoRA) using `get_peft_model` utility function from `peft`.
target_modules = None
target_modules = ['q_proj', 'v_proj'] # edit with your desired target modules
#lora_config = config.get("lora")
lora_config = LoraConfig(
r=8, lora_alpha=32, target_modules=target_modules, lora_dropout=0.1, bias="none", task_type="CAUSAL_LM"
)
callbacks = [SavePeftModelCallback] if lora_config else []
##no need to use callbacks
callbacks = []
training_args = trainer_config
model_name = "huggyllama/llama-13b"
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False)
tokenizer = fix_tokenizer(tokenizer)
# tokenizer.save_pretrained(output_dir)
dataset = load_dataset('multi_nli')
train_records = dataset['train']
val_records = dataset['validation_matched']
#random.shuffle(train_records)
print("train_record[0]: ",train_records[0])
model_type = "causal"
templates_path = "llama_lora_mnli_label.json"
only_target_loss = False
mode = "instruct"
llmtune_model_name = args.model_name
llmtune_quantized_weights_path = args.weight_path
llmtune_groupsize = 64
if mode == "instruct":
max_source_tokens_count = 64 # Changed depending on the dataset
max_target_tokens_count = 4
target_field = ""
source_field = "" #does not matter. (original alpaca-lora paper has additional "input" alongside instruction: instruction-input-output vs. instruction-response)
train_dataset = InstructDataset(
train_records,
tokenizer,
max_source_tokens_count=max_source_tokens_count,
max_target_tokens_count=max_target_tokens_count,
sample_rate=train_sample_rate,
input_type=model_type,
templates_path=templates_path,
target_field=target_field,
source_field=source_field,
only_target_loss=only_target_loss
)
val_dataset = InstructDataset(
val_records,
tokenizer,
max_source_tokens_count=max_source_tokens_count,
max_target_tokens_count=max_target_tokens_count,
sample_rate=val_sample_rate,
input_type=model_type,
templates_path=templates_path,
target_field=target_field,
source_field=source_field,
only_target_loss=only_target_loss
)
## Save the model
dataloader_train = torch.utils.data.DataLoader(train_dataset)
# torch.save(dataloader_train,'dataloader_train.pth')
dataloader_val = torch.utils.data.DataLoader(val_dataset)
# torch.save(dataloader_val,'dataloader_val.pth')
else:
assert False
if "seq2seq" in model_type:
data_collator = DataCollatorForSeq2Seq(tokenizer, pad_to_multiple_of=8)
else:
data_collator = DataCollatorForTokenClassification(tokenizer, pad_to_multiple_of=8)
print("INPUT_IDS")
print(data_collator([train_dataset[0], train_dataset[1]])["input_ids"][0])
print("MASK")
print(data_collator([train_dataset[0], train_dataset[1]])["attention_mask"][0])
print("LABELS")
print(data_collator([train_dataset[0], train_dataset[1]])["labels"][0])
llm, _ = load_llm(
llmtune_model_name,
llmtune_quantized_weights_path,
llmtune_groupsize
)
model = fix_model(llm, tokenizer, use_resize=False)
# Default model generation params
model.config.num_beams = 5
if mode == "instruct":
max_tokens_count = max_target_tokens_count + max_source_tokens_count + 1
model.config.max_length = max_tokens_count if model_type == "causal" else max_target_tokens_count
if not ddp and torch.cuda.device_count() > 1:
model.is_parallelizable = True
model.model_parallel = True
if lora_config:
#lora_config = LoraConfig(**lora_config)
# model = get_peft_model(model, lora_config)
model = load_adapter(model, lora_config=lora_config)
trainer_class = Trainer ##if not omit_base_model_save else TrainerNoBaseSave
print("Trainer class:", trainer_class)
trainer = trainer_class(
model=model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=val_dataset,
callbacks=callbacks,
data_collator=data_collator,
# preprocess_logits_for_metrics = preprocess_logits_for_metrics,
)
# with wandb.init(project="llama_ft_samsum", name="llama finetuning run") as run: ## changed the name don't forget
checkpoint_dir = output_dir
if os.path.exists(checkpoint_dir) and os.listdir(checkpoint_dir):
trainer.train(resume_from_checkpoint=True)
else:
trainer.train()
model.save_pretrained(output_dir)