-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathconfig.py
51 lines (45 loc) · 1.54 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import torch
from llmtune.llms.config import AutoConfig
from llmtune.llms.opt.config import OPT_MODELS
from llmtune.llms.llama.config import LLAMA_MODELS
from llmtune.engine.lora.config import FinetuneConfig
from llmtune.engine.quant.config import QuantConfig
# ----------------------------------------------------------------------------
# define some constants
DEV = torch.device('cuda')
LLM_MODELS = LLAMA_MODELS + OPT_MODELS
# ----------------------------------------------------------------------------
# helpers for loading configs
def get_finetune_config(args):
return FinetuneConfig(
dataset=args.dataset,
ds_type=args.data_type,
lora_out_dir=args.adapter,
mbatch_size=args.mbatch_size,
batch_size=args.batch_size,
epochs=args.epochs,
lr=args.lr,
cutoff_len=args.cutoff_len,
lora_r=args.lora_r,
lora_alpha=args.lora_alpha,
lora_dropout=args.lora_dropout,
val_set_size=args.val_set_size,
warmup_steps=args.warmup_steps,
save_steps=args.save_steps,
save_total_limit=args.save_total_limit,
logging_steps=args.logging_steps,
)
def get_quant_config(args):
return QuantConfig(
dataset=args.dataset,
bits=args.bits,
nsamples=args.nsamples,
groupsize=args.groupsize,
act_order=args.act_order,
percdamp=args.percdamp,
seed=args.seed,
nearest=args.nearest,
save=args.save,
)
def get_llm_config(model_name_or_path):
return AutoConfig(model_name_or_path)