-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_cifar10_unet_guidance.sh
87 lines (81 loc) · 2.51 KB
/
train_cifar10_unet_guidance.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
#!/bin/bash
#SBATCH -o ../watch_folder/%x_%j.out # output file (%j expands to jobID)
#SBATCH -N 1 # Total number of nodes requested
#SBATCH --get-user-env # retrieve the users login environment
#SBATCH --mem=64000 # server memory requested (per node)
#SBATCH -t 960:00:00 # Time limit (hh:mm:ss)
#SBATCH --constraint="[a100|a6000|a5000|3090]"
#SBATCH --ntasks-per-node=4
#SBATCH --gres=gpu:4 # Type/number of GPUs needed
#SBATCH --open-mode=append # Do not overwrite logs
#SBATCH --requeue # Requeue upon preemption
# NOTE: Need to set the (local) dataset path for downloaded cifar-10 data
DATASET_PATH="<path_to_datasets>"
<<comment
# Usage:
cd scripts/
MODEL=<mdlm|udlm>
sbatch \
--export=ALL,MODEL=${MODEL} \
--job-name=train_cifar10_${MODEL} \
train_cifar10_unet_guidance.sh
comment
# Setup environment
cd ../ || exit # Go to the root directory of the repo
source setup_env.sh
export NCCL_P2P_LEVEL=NVL
export HYDRA_FULL_ERROR=1
# Expecting:
# - MODEL (mdlm, udlm)
if [ -z "${MODEL}" ]; then
echo "MODEL is not set"
exit 1
fi
RUN_NAME="${MODEL}"
T=0
if [ "${MODEL}" = "mdlm" ]; then
PARAMETERIZATION=subs
DIFFUSION="absorbing_state"
ZERO_RECON_LOSS=False
time_conditioning=False
sampling_use_cache=True
elif [ "${MODEL}" = "udlm" ]; then
PARAMETERIZATION=d3pm
DIFFUSION="uniform"
ZERO_RECON_LOSS=True
time_conditioning=True
sampling_use_cache=False
else
echo "MODEL must be one of mdlm, udlm"
exit 1
fi
# To enable preemption re-loading, set `hydra.run.dir` or
srun python -u -m main \
is_vision=True \
diffusion=${DIFFUSION} \
parameterization=${PARAMETERIZATION} \
T=${T} \
time_conditioning=${time_conditioning} \
zero_recon_loss=${ZERO_RECON_LOSS} \
data=cifar10 \
data.train=${DATASET_PATH} \
data.valid=${DATASET_PATH} \
loader.global_batch_size=512 \
loader.eval_global_batch_size=64 \
backbone=unet \
model=unet \
optim.lr=2e-4 \
lr_scheduler=constant_warmup \
lr_scheduler.num_warmup_steps=5000 \
callbacks.checkpoint_every_n_steps.every_n_train_steps=10_000 \
trainer.max_steps=300_000 \
trainer.val_check_interval=10_000 \
+trainer.check_val_every_n_epoch=null \
training.guidance.cond_dropout=0.1 \
eval.generate_samples=True \
sampling.num_sample_batches=1 \
sampling.batch_size=2 \
sampling.use_cache=${sampling_use_cache} \
sampling.steps=128 \
wandb.name="cifar10_${RUN_NAME}" \
hydra.run.dir="${PWD}/outputs/cifar10/${RUN_NAME}"