-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
1850 lines (1586 loc) · 90.7 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import numpy as np
import pandas as pd
from scipy.stats import poisson
import statsmodels.api as sm
import statsmodels.formula.api as smf
from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier, GradientBoostingClassifier, \
VotingClassifier
from sklearn.neighbors import KNeighborsClassifier
import xgboost as xgb
from sklearn.naive_bayes import GaussianNB
from sklearn.linear_model import LogisticRegression
from sklearn.impute import SimpleImputer
from sklearn.pipeline import Pipeline
from sklearn.calibration import CalibratedClassifierCV
from sklearn.model_selection import GridSearchCV, RandomizedSearchCV
from sklearn.preprocessing import MinMaxScaler, Normalizer, OneHotEncoder
class Data:
'''
Class for manipulating the data and extracting characteristics.
Attributes:
today (pd.datetime64): current date (`pandas._libs.tslibs.timestamps.Timestamp`)
self.bankroll (int): bankroll from the summary
'''
# TODO: Make everything that is possible inplace and copy=False to increase performance
# TODO: Add dtypes to the self.attributes that are dataframes for faster operations [TLE] <16-11-20, kunzaatko> #
def __init__(self, sort_columns=True, optional_data_cols=[], ELO_mean_ELO=1500, ELO_k_factor=20, LL_data=True):
# {{{
'''
Parameters:
sort_columns(True): Sort the columns of the dataframes
optional_data_cols(list(str)): possible values:
'ELO_rating' - calculate the ELO rating as a feature in the LL_data DataFrame
ELO_mean_ELO(int): ELO, that teams start with
ELO_k_factor(int): maximum ELO points exchanged in one match
'''
########################
# private attributes #
########################
self._sort_columns = sort_columns
self._curr_inc_teams = None # teams that are in inc
self._curr_opps_teams = None # teams that are in opps
self._matches_not_registered_to_features = None # matches, that were not yet counted into team features
if 'ELO_rating' in optional_data_cols:
self.ELO_rating = True
self.ELO_mean_ELO = ELO_mean_ELO
self.ELO_k_factor = ELO_k_factor
else:
self.ELO_rating = False
########################
# Storage attributes #
########################
self.yesterday = None # this is used for initialization in very first inc of data and then as reference to yesterday
self.today = None # current date
self.bankroll = None # current bankroll
self.opps_matches = None
##########################
# Essential attributes #
##########################
# FIXME: The 'opps_Date' column is does not work, since we get multiple the matches with the same ID for several consecutive days <16-11-20, kunzaatko> #
# FIXME: Also the P_dis that is evaluated by our model can change from day to day so the P_dis, that we have stored is only the last one <16-11-20, kunzaatko> #
# `self.matches`
# index || 'opps_Date' | 'Sea' | 'Date' | 'Open' | 'LID' | 'HID' | 'AID'
# match ID || date of opps occurence | season | date of play | date of betting possibility | league ID (str) | home team ID | away team ID
# | 'HSC' | 'ASC' | 'H' | 'D' | 'A' | 'OddsH' | 'OddsD' | 'OddsA'
# | home goals scored | away goals scored | home win | draw | away win | odds of home win | odds of draw | odds of away win
# | 'P(H)' | 'P(D)' | 'P(A)' | 'BetH' | 'BetD' | 'BetA'
# | model prob. home win | model prob. draw | model prob. away win | bet home win | bet draw | bet away win
types = {'Date': 'datetime64[ns]', 'Open': 'datetime64[ns]', 'Sea': 'int16', 'HID': 'int16', 'AID': 'int16',
'OddsH': 'float64', 'OddsD': 'float64', 'OddsA': 'float64', 'HSC': 'int16', 'ASC': 'int16',
'H': 'int64', 'D': 'int64', 'A': 'int64', 'P(H)': 'float64', 'P(D)': 'float64', 'P(A)': 'float64',
'BetH': 'float64', 'BetD': 'float64', 'BetA': 'float64'}
self.matches = pd.DataFrame(
columns=['opps_Date', 'Sea', 'Date', 'Open', 'LID', 'HID', 'AID', 'HSC', 'ASC', 'H', 'D', 'A', 'OddsH',
'OddsD', 'OddsA', 'P(H)', 'P(D)', 'P(A)', 'BetH', 'BetD', 'BetA']).astype(types,
copy=False) # All matches played by IDs ﭾ
#########################
# Features attributes #
#########################
# `self.LL_data`
# LL: life-long
# index || 'LID' | 'LL_Goals_Scored' | 'LL_Goals_Conceded' | 'LL_Wins' | 'LL_Draws' | 'LL_Loses'
# team ID || league ID (list) | goals scored | goals conceded | wins | draws | loses
# | 'LL_Played' | 'LL_Accu'
# | played matches | model accuracy
self.LL_data = pd.DataFrame(
columns=['LID', 'LL_Goals_Scored', 'LL_Goals_Conceded', 'LL_Wins', 'LL_Draws', 'LL_Loses', 'LL_Played',
'LL_Accu']) # recorded teams
if self.ELO_rating:
self.LL_data['ELO_rating'] = np.nan
# `self.SL_data`
# SL: season-long
# index (multiindex)|| 'LID' | 'SL_Goals_Scored' | 'SL_Goals_Conceded' | 'SL_Wins' | 'SL_Draws' | 'SL_Loses'
# season,team ID || league ID (list) | goals scored | goals conceded | wins | draws | loses
# | 'SL_Played' | 'SL_Accu'
# | played matches | model accuracy
self.SL_data = pd.DataFrame(
columns=['LID', 'SL_Goals_Scored', 'SL_Goals_Conceded', 'SL_Wins', 'SL_Draws', 'SL_Loses', 'SL_Played',
'SL_Accu']) # data frame for storing all the time characteristics for seasons
# `self.match_data`
# index || 'MatchID' | 'Sea' | 'Date' | 'Oppo' | 'Home' | 'Away' | 'M_Goals_Scored' | 'M_Goals_Conceded'
# team ID || match ID | season | date of play | opponent id | team is home | team is away | goals scored | goals conceded
# | 'M_Win' | 'M_Draw' | 'M_Lose' | 'M_P(Win)' | 'M_P(Draw)' | 'M_P(Lose)' | 'M_Accu'
# | match win | match draw| match lose | model prob. win | model prob. draw | model prob. lose | model accuracy
self.match_data = pd.DataFrame(
columns=['MatchID', 'Date', 'Oppo', 'Home', 'Away', 'M_Goals_Scored', 'M_Goals_Conceded', 'M_Win', 'M_Draw',
'M_Lose', 'M_P(Win)', 'M_P(Draw)', 'M_P(Lose)', 'M_Accu'])
# `self.features`
# index || 'H_GS_GC_diff_#5'|'A_GS_GC_diff_#5' | 'H_GS_#' | 'A_GS_#' | 'H_GC_#' | 'A_GC_#' | 'H_WR_#' | 'A_WR_#' | 'H_DR_#' | 'A_DR_#' | 'H_LR_#' | 'A_Lr_#' |
# MatchID || goals scored - goals conceded in last 15 matches for home team | goals scored - goals conceded difference in last 15 matches for away team | home goals scored in last # matches | away goals scored in last # matches | home win rate in last # matches | away lose rate in last # matches | home draw rate in last # matches | away draw rate in last # matches | home lose rate in last # matches | away lose rate in last # matches |
self.features = pd.DataFrame(
columns=['H_GS_GC_diff_#15', 'A_GS_GC_diff_#15', 'H_GS_#', 'A_GS_#', 'H_GC_#', 'A_GC_#', 'H_WR_#', 'A_WR_#',
'H_DR_#', 'A_DR_#', 'H_LR_#', 'A_LR_#'])
# }}}
######################################
# UPDATING THE DATA STORED IN SELF #
######################################
def update_data(self, opps=None, summary=None, inc=None, P_dis=None, bets=None):
# {{{
'''
Run the iteration update of the data stored.
! Summary has to be updated first to get the right date!
Parameters:
All the parameters are supplied by the evaluation loop.
opps(pandas.DataFrame): dataframe that includes the opportunities for betting.
summary(pandas.DataFrame): includes the `Max_bet`, `Min_bet` and `Bankroll`.
inc(pandas.DataFrame): includes the played matches with the scores for the model.
'''
if summary is not None:
self._EVAL_summary(summary)
if inc is not None:
if self.today in inc['Date'].values:
print(all(pd.isna(inc.groupby('Date').get_group(self.today))))
inc = inc.loc[:, ~inc.columns.str.match(
'Unnamed')] # removing the 'Unnamed: 0' column (memory saning) See: https://stackoverflow.com/questions/36519086/how-to-get-rid-of-unnamed-0-column-in-a-pandas-dataframe
self._curr_inc_teams = np.unique(
np.concatenate((inc['HID'].to_numpy(dtype='int64'), inc['AID'].to_numpy(dtype='int64'))))
self._EVAL_inc(inc)
if opps is not None:
opps = opps.loc[:, ~opps.columns.str.match(
'Unnamed')] # removing the 'Unnamed: 0' column (memory saning) See: https://stackoverflow.com/questions/36519086/how-to-get-rid-of-unnamed-0-column-in-a-pandas-dataframe
self._curr_opps_teams = np.unique(
np.concatenate((opps['HID'].to_numpy(dtype='int64'), opps['AID'].to_numpy(dtype='int64'))))
opps['opps_Date'] = self.today
self._EVAL_opps(opps)
if P_dis is not None:
self._EVAL_P_dis(P_dis)
if bets is not None:
self._EVAL_bets(bets)
if self._sort_columns:
self.matches = self.matches[
['opps_Date', 'Sea', 'Date', 'Open', 'LID', 'HID', 'AID', 'HSC', 'ASC', 'H', 'D', 'A', 'OddsH', 'OddsD',
'OddsA', 'P(H)', 'P(D)', 'P(A)', 'BetH', 'BetD', 'BetA']]
if self.ELO_rating:
self.LL_data = self.LL_data[
['LID', 'LL_Goals_Scored', 'LL_Goals_Conceded', 'LL_Wins', 'LL_Draws', 'LL_Loses', 'LL_Played',
'LL_Accu', 'ELO_rating']]
else:
self.LL_data = self.LL_data[
['LID', 'LL_Goals_Scored', 'LL_Goals_Conceded', 'LL_Wins', 'LL_Draws', 'LL_Loses', 'LL_Played',
'LL_Accu']]
# }}}
def _EVAL_summary(self, summary):
# {{{
self.today = summary['Date'][0]
self.yesterday = self.today - pd.DateOffset(
1) # -> We do not have to worry about self.yesterday being None anymore
self.bankroll = summary['Bankroll'][0]
# }}}
def _EVAL_inc(self, inc):
# {{{
self._eval_teams(inc, self._curr_inc_teams)
self._eval_matches(inc, update_columns=['HSC', 'ASC', 'H', 'D', 'A'])
if self.ELO_rating:
self._eval_inc_update_ELO(inc)
# }}}
def _eval_inc_update_ELO(self, inc):
# {{{
'''
Update the ELO ratings for the new incremented data.
'''
def elo_for_one_team(row):
Home_ID, Away_ID, Home_win, _, Away_win = row.HID, row.AID, row.H, row.D, row.A
[Home_elo, Away_elo] = [self.LL_data.at[ID, 'ELO_rating'] for ID in [Home_ID, Away_ID]]
[Home_expected, Away_expected] = [1 / (1 + 10 ** ((elo_1 - elo_2) / 400)) for (elo_1, elo_2) in
[(Away_elo, Home_elo), (Home_elo, Away_elo)]]
if any([Home_win, Away_win]):
self.LL_data.at[Home_ID, 'ELO_rating'] += self.ELO_k_factor * (Home_win - Home_expected)
self.LL_data.at[Away_ID, 'ELO_rating'] += self.ELO_k_factor * (Away_win - Away_expected)
inc.apply(elo_for_one_team, axis=1)
# }}}
def _EVAL_opps(self, opps):
# {{{
self.opps_matches = opps.index.to_numpy()
self._eval_teams(opps, self._curr_inc_teams)
self._eval_matches(opps, update_columns=['Sea', 'Date', 'LID', 'HID', 'AID', 'Open', 'OddsH', 'OddsA', 'OddsD'])
# }}}
def _EVAL_P_dis(self, P_dis):
# {{{
self._eval_matches(P_dis, update_columns=['P(H)', 'P(D)', 'P(A)'])
# }}}
def _EVAL_bets(self, bets):
# {{{
self._eval_matches(bets, update_columns=['BetH', 'BetD', 'BetA'])
# }}}
def _eval_teams(self, data_frame, data_frame_teams):
# {{{
if not data_frame.empty:
###############
# NEW TEAMS #
###############
# teams that are already stored in the self.LL_data
index_self_teams = self.LL_data.index.to_numpy(dtype='int64')
# unique teams that are stored in the data frame
index_data_frame = data_frame_teams
# teams in the data_frame that are not stored in the self.LL_data
index_new_teams = np.setdiff1d(index_data_frame, index_self_teams)
if not len(index_new_teams) == 0: # if there are any new teams (otherwise invalid indexing)
# DataFrame of new teams
new_teams = pd.DataFrame(index=index_new_teams)
lids_frame = pd.concat((data_frame[['HID', 'LID']].set_index('HID'),
data_frame[['AID', 'LID']].set_index(
'AID'))) # TODO: This will not work if there are multiple LIDs for one team in one inc <15-11-20, kunzaatko> # NOTE: This is probably working only because the inc already added some teams.
lids = lids_frame[~lids_frame.index.duplicated(keep='first')].loc[index_new_teams]
# Making a list from the 'LID's
new_teams['LID'] = lids.apply(lambda row: np.array([row.LID]),
axis=1) # this is costly but is only run once for each match %timeit dataset['LID'] = dataset.apply(lambda row: [row.LID], axis=1) -> 463 ms ± 13.8 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
if self.ELO_rating:
new_teams['ELO_rating'] = self.ELO_mean_ELO
self.LL_data = pd.concat((self.LL_data, new_teams))
self.LL_data.fillna(0., inplace=True)
##############
# NEW LIDS #
##############
# NOTE: This could be optimised radically but it has shown to be a pain in the ass so this is it. If there will be a 'TLE' (time limit exceeded) error, this is the place to change <15-11-20, kunzaatko> #
# teams in the data_frame that are stored in the self.LL_data (teams that could have been changed)
index_old_teams = np.intersect1d(index_self_teams, index_data_frame)
index_old_teams_HID = np.intersect1d(index_old_teams, data_frame['HID'].to_numpy(dtype='int64'))
index_old_teams_AID = np.intersect1d(index_old_teams, data_frame['AID'].to_numpy(dtype='int64'))
for index in index_old_teams_HID:
if not type(data_frame.set_index('HID').loc[index]) == pd.DataFrame:
if not data_frame.set_index('HID').loc[index]['LID'] in self.LL_data.at[index, 'LID']:
self.LL_data.at[index, 'LID'] = np.append(self.LL_data.at[index, 'LID'],
data_frame.set_index('HID').at[index, 'LID'])
else:
if not data_frame.set_index('HID').loc[index].iloc[0]['LID'] in self.LL_data.at[index, 'LID']:
self.LL_data.at[index, 'LID'] = np.append(self.LL_data.at[index, 'LID'],
data_frame.set_index('HID').at[index, 'LID'])
for index in index_old_teams_AID:
if not type(data_frame.set_index('AID').loc[index]) == pd.DataFrame:
if not data_frame.set_index('AID').loc[index]['LID'] in self.LL_data.at[index, 'LID']:
self.LL_data.at[index, 'LID'] = np.append(self.LL_data.at[index, 'LID'],
data_frame.set_index('AID').at[index, 'LID'])
else:
if not data_frame.set_index('AID').loc[index].iloc[0]['LID'] in self.LL_data.at[index, 'LID']:
self.LL_data.at[index, 'LID'] = np.append(self.LL_data.at[index, 'LID'],
data_frame.set_index('AID').at[index, 'LID'])
# see also (https://stackoverflow.com/questions/45062340/check-if-single-element-is-contained-in-numpy-array)}}}
# TODO: Probably does not work correctly for the bets. The bets should not be combined for the `opps` and the `inc` but only for the `bets` dataframe. <17-11-20, kunzaatko> #
# TODO: the 'opps_Date' is not working. The indexes should not be concatenated but appended for new matches if they do not have the same 'opps_Date'... (When they are not added on the same day) <17-11-20, kunzaatko> # -> the problem with this is though that we would have to groupby matchid to to access a match, and multiple MatchIDs would be the same in the dataframe -> We should consider adding a new frame with this data (or maybe the bets should be recorded as an associated series of the match... What is your oppinion/solution?
def _eval_matches(self, data_frame, update_columns=[]):
# {{{
# !!! this changes the dtypes and therefore runs slowly (as per https://github.com/pandas-dev/pandas/issues/28613)
# self.matches = self.matches.combine_first(data_frame)
old_matches = np.intersect1d(data_frame.index.to_numpy(dtype='int32'),
self.matches.index.to_numpy(dtype='int32'))
self.matches.update(data_frame[update_columns].loc[old_matches])
new_matches = np.setdiff1d(data_frame.index.to_numpy(dtype='int32'), old_matches)
# if there are no such indices, then append whole frame
self.matches = self.matches.append(data_frame.loc[new_matches]).sort_index()
# }}}
#####################################################################
# UPDATE THE FEATURES THAT CAN BE EXTRACTED FROM THE DATA IN SELF #
#####################################################################
def update_features(self):
# {{{
'''
Update the features for the data stored in `self`.
'''
self._UPDATE_LL_data_features()
# self._UPDATE_SL_data_features()
self._UPDATE_match_data_features()
self._UPDATE_features()
# }}}
def _UPDATE_LL_data_features(self):
# {{{
'''
Populate all the features from the frame `self.LL_data`
'''
matches_played_before = self.matches[self.matches['Date'] < self.today] if self.yesterday is None else \
self.matches.groupby('Date').get_group(self.yesterday) if self.yesterday in self.matches['Date'].to_numpy() \
else None
matches_played_today = self.matches.groupby('Date').get_group(self.today) if self.today in self.matches[
'Date'].to_numpy() \
else None
self._update_LL_Played(matches_played_before)
self._update_LL_Goals(matches_played_before)
self._update_LL_Res(matches_played_before)
self._update_LL_Accu(matches_played_before)
# }}}
def _update_LL_Played(self, matches_played):
# {{{
'''
Update 'LL_Played' (games) of the fram self.LL_data
:param matches_played: pd.Dataframe:
Contains matches played at self.yesterday
'''
if matches_played is not None:
teams_played = np.unique(np.concatenate((matches_played['HID'].to_numpy(dtype='int64'),
matches_played['AID'].to_numpy(dtype='int64'))),
return_counts=True)
self.LL_data.loc[teams_played[0], 'LL_Played'] = self.LL_data.loc[teams_played[0], 'LL_Played'] + \
teams_played[1]
# }}}
def _update_LL_Goals(self, matches_played):
# {{{
'''
Update 'LL_Goals_Scored' and 'LL_Goals_Conceded' of the frame `self.LL_data`
'''
if matches_played is not None:
teams_goals_scored = np.concatenate([matches_played[['HID', 'HSC']].to_numpy(dtype='int64'),
matches_played[['AID', 'ASC']].to_numpy(dtype='int64')])
teams_goals_conceded = np.concatenate([matches_played[['HID', 'ASC']].to_numpy(dtype='int64'),
matches_played[['AID', 'HSC']].to_numpy(dtype='int64')])
scored = fast(teams_goals_scored)
conceded = fast(teams_goals_conceded)
self.LL_data.loc[scored[:, 0], 'LL_Goals_Scored'] = \
self.LL_data.loc[scored[:, 0], 'LL_Goals_Scored'] + scored[:, 1]
self.LL_data.loc[conceded[:, 0], 'LL_Goals_Conceded'] = \
self.LL_data.loc[conceded[:, 0], 'LL_Goals_Conceded'] + conceded[:, 1]
# }}}
def _update_LL_Res(self, matches_played):
# {{{
'''
Update 'LL_Wins', 'LL_Draws' and 'LL_Loses' of the frame `self.LL_data`
'''
if matches_played is not None:
teams_wins = np.concatenate([matches_played[['HID', 'H']].to_numpy(dtype='int64'),
matches_played[['AID', 'A']].to_numpy(dtype='int64')])
teams_loses = np.concatenate([matches_played[['HID', 'A']].to_numpy(dtype='int64'),
matches_played[['AID', 'H']].to_numpy(dtype='int64')])
teams_draws = np.concatenate([matches_played[['HID', 'D']].to_numpy(dtype='int64'),
matches_played[['AID', 'D']].to_numpy(dtype='int64')])
wins = fast(teams_wins)
loses = fast(teams_loses)
draws = fast(teams_draws)
self.LL_data.loc[wins[:, 0], 'LL_Wins'] = self.LL_data.loc[wins[:, 0], 'LL_Wins'] + wins[:, 1]
self.LL_data.loc[loses[:, 0], 'LL_Loses'] = self.LL_data.loc[loses[:, 0], 'LL_Loses'] + loses[:, 1]
self.LL_data.loc[draws[:, 0], 'LL_Draws'] = self.LL_data.loc[draws[:, 0], 'LL_Draws'] + draws[:, 1]
# }}}
def _update_LL_Accu(self, matches_played):
# {{{
'''
Update 'LL_Accu' of the frame `self.LL_data`
'''
if matches_played is not None:
pass
# }}}
def _UPDATE_SL_data_features(self):
# {{{
'''
Populate all the features of `self.SL_data`
'''
# TODO: should be done incrementaly <17-11-20, kunzaatko> #
# TODO I assume that 'self.SL_data' are updated when new team will be present in 'inc' (Many98)
matches_played_before = self.matches[self.matches['Date'] < self.today] if self.yesterday is None else \
self.matches.groupby('Date').get_group(self.yesterday) if self.yesterday in self.matches['Date'].to_numpy() \
else None
self._update_SL_Goals(matches_played_before)
self._update_SL_Res(matches_played_before)
self._update_SL_Played(matches_played_before)
self._update_SL_Accu(matches_played_before)
# }}}
# TODO: Could be unified with `_update_LL_Goals` as `_update_Goals` but for different frames. <17-11-20, kunzaatko> #
def _update_SL_Goals(self, matches_played):
# {{{
'''
Update 'SL_Goals_Scored' and 'SL_Goals_Conceded' of the frame `self.SL_data`
'''
if matches_played is not None:
seasons = [season for season in matches_played.groupby('Sea')]
for sea, season in seasons:
teams_goals_scored = np.concatenate([season[['HID', 'HSC']].to_numpy(dtype='int64'),
season[['AID', 'ASC']].to_numpy(dtype='int64')])
teams_goals_conceded = np.concatenate([season[['HID', 'ASC']].to_numpy(dtype='int64'),
season[['AID', 'HSC']].to_numpy(dtype='int64')])
scored = fast(teams_goals_scored)
conceded = fast(teams_goals_conceded)
ind_gs = [(sea, team_id) for team_id in scored[:, 0]]
ind_gc = [(sea, team_id) for team_id in conceded[:, 0]]
self.SL_data.loc[ind_gs, 'SL_Goals_Scored'] = \
self.SL_data.loc[ind_gs, 'SL_Goals_Scored'] + scored[:, 1]
self.SL_data.loc[ind_gc, 'SL_Goals_Conceded'] = \
self.SL_data.loc[ind_gc, 'SL_Goals_Conceded'] + conceded[:, 1]
# }}}
# TODO: Could be unified with `_update_LL_Res` as `_update_Res` but for different frames. <17-11-20, kunzaatko> #
def _update_SL_Res(self, matches_played):
# {{{
if matches_played is not None:
seasons = [season for season in matches_played.groupby('Sea')]
for sea, season in seasons:
teams_wins = np.concatenate([season[['HID', 'H']].to_numpy(dtype='int64'),
season[['AID', 'A']].to_numpy(dtype='int64')])
teams_loses = np.concatenate([season[['HID', 'A']].to_numpy(dtype='int64'),
season[['AID', 'H']].to_numpy(dtype='int64')])
teams_draws = np.concatenate([season[['HID', 'D']].to_numpy(dtype='int64'),
season[['AID', 'D']].to_numpy(dtype='int64')])
wins = fast(teams_wins)
loses = fast(teams_loses)
draws = fast(teams_draws)
ind_wins = [(sea, team_id) for team_id in wins[:, 0]]
ind_loses = [(sea, team_id) for team_id in loses[:, 0]]
ind_draws = [(sea, team_id) for team_id in draws[:, 0]]
self.SL_data.loc[ind_wins, 'SL_Wins'] = \
self.SL_data.loc[ind_wins, 'SL_Wins'] + wins[:, 1]
self.SL_data.loc[ind_loses, 'SL_Loses'] = \
self.SL_data.loc[ind_loses, 'SL_Loses'] + loses[:, 1]
self.SL_data.loc[ind_draws, 'SL_Draws'] = \
self.SL_data.loc[ind_draws, 'SL_Draws'] + draws[:, 1]
# }}}
# TODO: Could be unified with `_update_LL_Played` as `_update_Played` but for different frames. <17-11-20, kunzaatko> #
def _update_SL_Played(self, matches_played):
# {{{
if matches_played is not None:
seasons = [season for season in matches_played.groupby('Sea')]
for sea, season in seasons:
teams_played = np.unique(np.concatenate((season['HID'].to_numpy(dtype='int64'),
season['AID'].to_numpy(dtype='int64'))), return_counts=True)
ind_teams = [(sea, team_id) for team_id in teams_played[0]]
self.SL_data.loc[ind_teams, 'SL_Played'] = self.SL_data.loc[ind_teams, 'SL_Played'] + \
teams_played[1]
# }}}
# TODO: Could be unified with `_update_LL_Accu` as `_update_Accu` but for different frames. <17-11-20, kunzaatko> #
def _update_SL_Accu(self, matches_played):
# {{{
'''
Update 'SL_Accu' of the frame `self.LL_data`
'''
pass
# }}}
def _UPDATE_match_data_features(self):
# {{{
'''
Populate all the features of `self.match_data`
'''
# if we are on the first inc or we skiped some dates...
if not np.setdiff1d(self.matches.Date.to_numpy()[self.matches.Date.to_numpy() < self.yesterday],
self.match_data.Date.to_numpy()).size == 0:
self._update_add_matches(self.matches[self.matches.Date <= self.yesterday])
elif self.yesterday in self.matches['Date'].to_numpy():
# a dataframe of all the todays matches (matches that where played on `self.today`)
matches_played_yesterday = self.matches.groupby('Date').get_group(self.yesterday)
self._update_add_matches(matches_played_yesterday)
# TODO: should be done incrementaly <17-11-20, kunzaatko> #
# }}}
# FIXME: does not update the matches that are not gone through at today... The matches in the first inc. <18-11-20, kunzaatko> #
def _update_add_matches(self, matches_played_yesterday):
# {{{
'''
Add the matches that were played yesterday. The fields 'MatchID', 'Date' == self.yesterday, 'Oppo' == HID/AID, 'Home' & 'Away' (int 1/0), 'M_Goals_Scored' & 'M_Goals_Conceded' (int), 'M_Win' & 'M_Draw' & 'M_Lose' (int 1/0), 'M_P(Win)' & 'M_P(Draw)' & 'M_P(Lose)' (float), 'M_Accu' should be filled.
'''
# the matches that played as home
matches_home = matches_played_yesterday.set_index('HID').drop(labels=['Open', 'opps_Date'], axis=1)
renames = {'AID': 'Oppo', 'HSC': 'M_Goals_Scored', 'ASC': 'M_Goals_Conceded', 'H': 'M_Win', 'D': 'M_Draw',
'A': 'M_Lose', 'P(H)': 'M_P(Win)', 'P(D)': 'M_P(Draw)', 'P(A)': 'M_P(Lose)'}
matches_home.rename(renames, axis=1, inplace=True)
matches_home['Home'] = 1
matches_home['Away'] = 0
matches_home['MatchID'] = matches_played_yesterday.index
# TODO: Model accuracy <17-11-20, kunzaatko> #
# the matches that played as away
matches_away = matches_played_yesterday.set_index('AID').drop(labels=['Open', 'opps_Date'], axis=1)
renames = {'HID': 'Oppo', 'ASC': 'M_Goals_Scored', 'HSC': 'M_Goals_Conceded', 'A': 'M_Win', 'D': 'M_Draw',
'H': 'M_Lose', 'P(A)': 'M_P(Win)', 'P(D)': 'M_P(Draw)', 'P(H)': 'M_P(Lose)'}
matches_away.rename(renames, axis=1, inplace=True)
matches_away['Home'] = 0
matches_away['Away'] = 1
matches_away['MatchID'] = matches_played_yesterday.index
# TODO: Model accuracy <17-11-20, kunzaatko> #
# TODO: Do not create a new object but only concat. <17-11-20, kunzaatko> #
self.match_data = self.match_data.append([matches_away, matches_home])
# }}}
##############
# FEATURES #
##############
def total_goals_to_match(self, ID, number_of_matches, MatchID=None, goal_type='scored'):
# {{{
'''
Total life-long goal to match ratio.
Parameters:
ID(int): team id
number_of_matches(int): num
goal_type(str): 'scored'/'conceded'
Returns:
float: scored goals / # matches
'''
pass
# }}}
# TODO features working with goals_scored/conceded for particluar team should be wrapped to one method
def goals_difference_to_num_matches(self, team_id, num_matches=1):
# {{{
"""
Calculates (GS-GC) of specific team from goals scored and conceded in particular number of matches played before.
This feature should somehow aggregate information about team attack and defensive strength.
:param team_id: int:
Specifies particular team
:param num_matches: int:
Specifies particular number of matches from which the goals characteristics should be included.
Default is set to 1.
:return: int:
"""
if type(num_matches) is not int or num_matches == 0:
num_matches = 1
# this is fastest selecting in compared with concat and append
# %timeit matches[(matches["HID"] == team_id) | (matches["AID"] == team_id)].sort_index()
# 1.21 ms ± 14.7 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
# %timeit pd.concat([matches[matches["HID"] == team_id], matches[matches["AID"] == team_id]]).sort_index()
# 3.26 ms ± 62.2 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
# %timeit matches[matches["HID"]==team_id].append(matches[matches["AID"]==team_id]).sort_index()
# 3.31 ms ± 75.8 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
matches_containing_team = self.matches[(self.matches["HID"] == team_id) |
(self.matches["AID"] == team_id)].sort_index()[-num_matches - 1:-1]
goals_conceded, goals_scored = np.nan, np.nan
if not matches_containing_team.empty:
goals_conceded = matches_containing_team[matches_containing_team["HID"] == team_id]['ASC'].sum() + \
matches_containing_team[matches_containing_team["AID"] == team_id]['HSC'].sum()
goals_scored = matches_containing_team[matches_containing_team["HID"] == team_id]['HSC'].sum() + \
matches_containing_team[matches_containing_team["AID"] == team_id]['ASC'].sum()
return goals_scored - goals_conceded
# }}}
def goals_difference_to_time_period(self, team_id, time_period_type='M', time_period_num=1):
# {{{
"""
Calculates (GS-GC) of specific team from goals scored and conceded in particular time period played before.
This feature should somehow aggregate information about team attack and defensive strength.
:param time_period_num: int:
Specifies particular number of time period (specified in param 'time_period_type') from which the goals
characteristics should be included.
:param time_period_type: str:
Possible values are: 'W' : week(fixed to 7 days)
'M' : month(fixed to 30 days)
'Y' : year(fixed to 365 days)
'S' : season(using self.SL_data)
'L' : life(using self.LL_data)
:param team_id: int:
Specifies particular team
:return: int:
"""
if time_period_type not in ['W', 'M', 'Y', 'S', 'L']:
time_period_type = 'M'
if type(time_period_num) is not int or time_period_num == 0:
time_period_num = 1
if time_period_type in ['W', 'M', 'Y', 'S']:
goals_scored = np.nan
goals_conceded = np.nan
if time_period_type in ['W', 'M', 'Y']:
matches_containing_team = self.matches[(self.matches["HID"] == team_id) |
(self.matches["AID"] == team_id)].sort_index()
if time_period_type == 'W':
time_period_num *= 7 # week fixed to 7 days
elif time_period_type == 'M':
time_period_num *= 30 # month fixed to 30 days
elif time_period_type == 'Y':
time_period_num *= 365 # year fixed to 365 days
how_deep_to_past = np.datetime64(self.today) - np.timedelta64(time_period_num, 'D')
matches_containing_team = matches_containing_team[
(matches_containing_team['Date'] >= str(how_deep_to_past))
& (matches_containing_team['Date'] < self.yesterday)]
if not matches_containing_team.empty:
goals_conceded = matches_containing_team[matches_containing_team["HID"] == team_id]['ASC'].sum() + \
matches_containing_team[matches_containing_team["AID"] == team_id]['HSC'].sum()
goals_scored = matches_containing_team[matches_containing_team["HID"] == team_id]['HSC'].sum() + \
matches_containing_team[matches_containing_team["AID"] == team_id]['ASC'].sum()
elif time_period_type == 'S':
# It is assumed that team is already added in DataFrame self.LL_data
matches_containing_team = self.SL_data.xs(team_id, level='second')[-1 - time_period_num:-1]
if not matches_containing_team.empty:
goals_conceded = matches_containing_team['SL_Goals_Conceded'].sum()
goals_scored = matches_containing_team['SL_Goals_Scored'].sum()
return goals_scored - goals_conceded
elif time_period_type == 'L':
# It is assumed that team is already added in DataFrame self.LL_data
return self.LL_data.loc[team_id, 'LL_Goals_Scored'] - self.LL_data.loc[team_id, 'LL_Goals_Conceded']
# }}}
def goals_ratio_to_num_matches(self, team_id, num_matches=1):
# {{{
"""
Calculates (GS/GC) of specific team from goals scored and conceded in particular number of matches played before.
This feature should somehow aggregate information about team attack and defensive strength.
:param team_id: int:
Specifies particular team
:param num_matches: int:
Specifies particular number of matches from which the goals characteristics should be included.
:return: int:
"""
if type(num_matches) is not int or num_matches == 0:
num_matches = 1
# this is fastest selecting to compared with concat and append
# %timeit matches[(matches["HID"] == team_id) | (matches["AID"] == team_id)].sort_index()
# 1.21 ms ± 14.7 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
# %timeit pd.concat([matches[matches["HID"] == team_id], matches[matches["AID"] == team_id]]).sort_index()
# 3.26 ms ± 62.2 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
# %timeit matches[matches["HID"]==team_id].append(matches[matches["AID"]==team_id]).sort_index()
# 3.31 ms ± 75.8 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
matches_containing_team = self.matches[(self.matches["HID"] == team_id) |
(self.matches["AID"] == team_id)].sort_index()[-1 - num_matches:-1]
goals_conceded, goals_scored = np.nan, np.nan
if not matches_containing_team.empty:
goals_conceded = matches_containing_team[matches_containing_team["HID"] == team_id]['ASC'].sum() + \
matches_containing_team[matches_containing_team["AID"] == team_id]['HSC'].sum()
goals_scored = matches_containing_team[matches_containing_team["HID"] == team_id]['HSC'].sum() + \
matches_containing_team[matches_containing_team["AID"] == team_id]['ASC'].sum()
return goals_scored / goals_conceded if goals_conceded != 0 else goals_scored / (goals_conceded + 1)
# }}}
def goals_ratio_to_time_period(self, team_id, time_period_type='M', time_period_num=1):
# {{{
"""
Calculates (GS/GC) of specific team from goals scored and conceded in particular time period played before.
This feature should somehow aggregate information about team attack and defensive strength.
:param time_period_num: int:
Specifies particular number of time period (specified in param 'time_period_type') from which the goals
characteristics should be included.
:param time_period_type: str:
Possible values are: 'W' : week(fixed to 7 days)
'M' : month(fixed to 30 days)
'Y' : year(fixed to 365 days)
'S' : season(using self.SL_data)
'L' : life(using self.LL_data)
:param team_id: int:
Specifies particular team
:return: int:
"""
if time_period_type not in ['W', 'M', 'Y', 'S', 'L']:
time_period_type = 'M'
if type(time_period_num) is not int or time_period_num == 0:
time_period_num = 1
if time_period_type in ['W', 'M', 'Y', 'S']:
goals_scored = np.nan
goals_conceded = np.nan
if time_period_type in ['W', 'M', 'Y']:
matches_containing_team = self.matches[(self.matches["HID"] == team_id) |
(self.matches["AID"] == team_id)].sort_index()
if time_period_type == 'W':
time_period_num *= 7 # week fixed to 7 days
elif time_period_type == 'M':
time_period_num *= 30 # month fixed to 30 days
elif time_period_type == 'Y':
time_period_num *= 365 # year fixed to 365 days
how_deep_to_past = np.datetime64(self.today) - np.timedelta64(time_period_num, 'D')
matches_containing_team = matches_containing_team[
(matches_containing_team['Date'] >= str(how_deep_to_past))
& (matches_containing_team['Date'] < self.yesterday)]
if not matches_containing_team.empty:
goals_conceded = matches_containing_team[matches_containing_team["HID"] == team_id]['ASC'].sum() + \
matches_containing_team[matches_containing_team["AID"] == team_id]['HSC'].sum()
goals_scored = matches_containing_team[matches_containing_team["HID"] == team_id]['HSC'].sum() + \
matches_containing_team[matches_containing_team["AID"] == team_id]['ASC'].sum()
elif time_period_type == 'S':
# It is assumed that team is already added in DataFrame self.LL_data
matches_containing_team = self.SL_data.xs(team_id, level='second')[-1 - time_period_num:-1]
if not matches_containing_team.empty:
goals_conceded = matches_containing_team['SL_Goals_Conceded'].sum()
goals_scored = matches_containing_team['SL_Goals_Scored'].sum()
return goals_scored / goals_conceded if goals_conceded != 0 else goals_scored / (goals_conceded + 1)
elif time_period_type == 'L':
# It is assumed that team is already added in DataFrame self.LL_data
gs, gc = self.LL_data.loc[team_id, 'LL_Goals_Scored'], self.LL_data.loc[team_id, 'LL_Goals_Conceded']
return gs / gc if gc != 0 else gs / (gc + 1)
# }}}
def goals_to_match_ratio(self, ID, number_of_matches, MatchID=None, goal_type='scored'):
# {{{
'''
Parametrs:
ID(int): ID of the team.
number_of_matches(int): Number of matches to evaluate.
MatchID(int): MatchID for the feature
goal_type(str): 'scored'/'conceded'(None)
Returns:
float: (scored / conceded) goals / # matches
'''
team_matches = self.match_data.loc[ID]
if not MatchID:
last_number_of_matches = team_matches.tail(number_of_matches)
if MatchID:
match_date = self.matches.loc[MatchID].Date
previous_matches = team_matches[team_matches.Date < match_date]
last_number_of_matches = previous_matches.tail(number_of_matches)
if goal_type == 'scored':
return last_number_of_matches.M_Goals_Scored.sum() / number_of_matches
else:
return last_number_of_matches.M_Goals_Conceded.sum() / number_of_matches
# }}}
def goals_ratio(self, ID, oppo_ID, matches=1, vs=False):
# {{{
'''
Returns (goals_scored/(goals_scored + goals_conceded)) of first team or this vs statistics
Parametrs:
oppo_ID(int): ID of the opponent.
ID(int): team id
matches(int): numbers of matches to past
vs(bool): set against each other
Returns:
float or 2 floats
'''
matches_period = self.matches[(self.matches["HID"] == ID) | (self.matches["AID"] == ID)].sort_index()[
-1 - matches:-1]
if vs:
matches_period = matches_period[matches_period["HID"] == oppo_ID].append(
matches_period[matches_period["AID"] == oppo_ID]).sort_index()[-1 - matches:-1]
goals_conceded, goals_scored = np.nan, np.nan
if not matches_period.empty:
goals_conceded = matches_period[matches_period["HID"] == ID]['ASC'].sum() + \
matches_period[matches_period["AID"] == ID]['HSC'].sum()
goals_scored = matches_period[matches_period["HID"] == ID]['HSC'].sum() + \
matches_period[matches_period["AID"] == ID]['ASC'].sum()
goals_ID = goals_scored / (goals_scored + goals_conceded)
if vs:
return (goals_ID, (1 - goals_ID))
else:
return goals_ID
# }}}
def wins_ratio(self, ID, months=None, matches=None):
# {{{
'''
Returns wins in time or match period
Parameters:
ID(int): team id
months(int) = numbers of months
matches(int) = numbers of matches to past
Returns:
int
'''
if months != None:
months_period = self.matches[
self.matches['Date'].isin(pd.date_range(end=self.today, periods=(months * 30), freq='D')[::-1])]
wins = np.nan
if not months_period.empty:
wins = months_period[months_period["HID"] == ID]["H"].sum() + \
months_period[months_period["AID"] == ID]["A"].sum()
return wins
else:
matches_period = self.matches[(self.matches["HID"] == ID) | (self.matches["AID"] == ID)].sort_index()[
-1 - matches:-1]
wins = np.nan
if not matches_period.empty:
wins = matches_period[matches_period["HID"] == ID]['H'].sum() + \
matches_period[matches_period["AID"] == ID]['A'].sum()
return wins
# }}}
def home_advantage(self, ID, MatchID=None, method=None):
# {{{
'''
Calculate the home advantage feature of the team. t.i. (# home_wins)/(# home_plays) - (#wins)/(#plays)
That is home_win_r - win_r. (The advantage of playing home against the total win rate).
Parameters:
MatchID(int/None): The `MatchID` to calculate the feature for. If `== None` than it counts all the matches that were recorded
method(str/None): (`'rate_surplus`/`'rate_ratio'`/None).
`'rate_surplus'` -> `home_win_r - win_r`
`'rate_ratio'` -> `home_win_r / win_r`
`'None'` / `'rate'` -> `home_win_r`
`'all'` -> returns a tuple of (rate_surplus,rate_ratio,rate)
'''
team_matches = self.match_data.loc[ID]
team_matches_home = team_matches[team_matches.Home == 1]
# if calculating with all the match IDs that are currently recorded
if not MatchID:
home_win_r = (team_matches_home['M_Win'] + team_matches_home['M_Draw'] * .5).sum() / len(team_matches_home)
if method in ['rate_surplus', 'rate_ratio', 'all']:
win_r = (team_matches['M_Win'] + team_matches['M_Draw'] * .5).sum() / len(team_matches)
# calculate for some arbitrary MatchID with more matches being recorded than only the ones berfore the MatchID (for correlation purposes)
else:
match_date = self.matches.loc[MatchID].Date
previous_home_matches = team_matches[(team_matches.Date < match_date) & (team_matches.Home == 1)]
previous_matches = team_matches[team_matches.Date < match_date]
home_win_r = (previous_home_matches['M_Win'] + previous_home_matches['M_Draw'] * .5).sum() / len(
previous_home_matches)
if method in ['rate_surplus', 'rate_ratio', 'all']:
win_r = (previous_matches['M_Win'] + previous_matches['M_Draw'] * .5).sum() / len(previous_matches)
if method == 'rate_surplus':
return home_win_r - win_r
elif method == 'rate_ratio':
return home_win_r / win_r # test only away_lose_r
elif method == 'all':
return (home_win_r - win_r, home_win_r / win_r, home_win_r)
else:
return home_win_r
# }}}
def away_disadvantage(self, ID, MatchID=None, method=None):
# {{{
'''
Calculate the away disadvantage feature of the team. t.i. (# away_loses)/(# away_plays) - (# loses)/(#plays)`
That is away_lose_r - lose_r. (The advantage of playing home against the total win rate).
Parameters:
MatchID(int/None): The `MatchID` to calculate the feature for. If `== None` than it counts all the matches that were recorded
method(str/None): (`'rate_surplus`/`'rate_ratio'`/None).
`'rate_surplus'` -> `away_lose_r - lose_r`
`'rate_ratio'` -> `away_lose_r / lose_r`
`'None'` / `'rate'` -> `away_lose_r`
`'all'` -> returns a tuple of (rate_surplus,rate_ratio,rate)
'''
team_matches = self.match_data.loc[ID]
team_matches_away = team_matches[team_matches.Away == 1]
# if calculating with all the match IDs that are currently recorded
if not MatchID:
away_lose_r = (team_matches_away['M_Lose'] + team_matches_away['M_Draw'] * .5).sum() / len(
team_matches_away)
if method in ['rate_surplus', 'rate_ratio', 'all']:
lose_r = (team_matches['M_Lose'] + team_matches['M_Draw'] * .5).sum() / len(team_matches)
# calculate for some arbitrary MatchID with more matches being recorded than only the ones berfore the MatchID (for correlation purposes)
else:
match_date = self.matches.loc[MatchID]['Date']
previous_away_matches = team_matches[(team_matches.Date < match_date) & (team_matches.Away == 1)]
previous_matches = team_matches[team_matches.Date < match_date]
away_lose_r = (previous_away_matches['M_Lose'] + previous_away_matches['M_Draw'] * .5).sum() / len(
previous_away_matches)
if method in ['rate_surplus', 'rate_ratio', 'all']:
lose_r = (previous_matches['M_Lose'] + previous_matches['M_Draw'] * .5).sum() / len(previous_matches)
if method == 'rate_surplus':
return away_lose_r - lose_r
elif method == 'rate_ratio':
return away_lose_r / lose_r # test only away_lose_r
elif method == 'all':
return (away_lose_r - lose_r, away_lose_r / lose_r, away_lose_r)
else:
return away_lose_r
# }}}
def elo_diff(self, MatchID):
# {{{
'''
Returns the difference of the ELO ratings of the two teams playing in the match. (ELO_home - ELO_away)
'''
return self.LL_data.loc[self.matches.loc[MatchID].HID].ELO_rating - self.LL_data.loc[
self.matches.loc[MatchID].AID].ELO_rating
# }}}
###################
# RETURN VALUES #
###################
def _UPDATE_features(self):
# {{{
'''
Updates the features in the attribute `self.features`
'''
def update_for_match(row):
MatchID = row.name
match_date = self.matches.loc[MatchID].Date
home_team, away_team = self.matches.loc[MatchID].HID, self.matches.loc[MatchID].AID
home_all_matches = self.match_data.loc[home_team]
away_all_matches = self.match_data.loc[away_team]
# only taking matches that are older, than the currently analysed
if type(home_all_matches) == pd.DataFrame: # there are multiple matches
home_matches = home_all_matches[self.match_data.loc[home_team].Date < match_date]
elif type(
home_all_matches) == pd.Series: # there is only one match therefore the `home_all_matches` is a `pd.Series`
home_matches = home_all_matches if home_all_matches.loc['Date'] < match_date else None
else: # there is no match
home_matches = None
if type(away_all_matches) == pd.DataFrame: # there are multiple matches
away_matches = away_all_matches[self.match_data.loc[away_team].Date < match_date]
elif type(
home_all_matches) == pd.Series: # there is only one match therefore the `away_all_matches` is a `pd.Series`