-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathAC_grid_tools.py
221 lines (200 loc) · 7.02 KB
/
AC_grid_tools.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
from operator import attrgetter
from itertools import chain
#read in Epitope annotation file
ea_lines = open("searchable_2.tsv",'r').read().splitlines()
epi_anno = {}
for e in ea_lines:
protein = e.split("\t")[0]
epi_list = [int(p) for p in e.split("\t")[1][1:-1].split(',')]
epi_anno[protein] = epi_list
class AC(object):
def __init__(self, position, aa, x=0, y=0, z=0, epi= False, pi = 5.97):
self.position = int(position)
self.aa = aa
self.x = float(x)
self.y = float(y)
self.z = float(z)
self.epi = epi
if self.aa == 'GLY':
pi = 5.97
if self.aa == 'ALA':
pi = 6
if self.aa == 'VAL':
pi = 5.96
if self.aa == 'LEU':
pi = 5.98
if self.aa == 'ILE':
pi = 6.02
if self.aa == 'MET':
pi = 5.74
if self.aa == 'PRO':
pi = 6.30
if self.aa == 'PHE':
pi = 5.48
if self.aa == 'TRP':
pi = 5.89
if self.aa == 'ASN':
pi = 5.41
if self.aa == 'GLN':
pi = 5.65
if self.aa == 'SER':
pi = 5.68
if self.aa == 'THR':
pi = 5.60
if self.aa == 'TYR':
pi = 5.66
if self.aa == 'CYS':
pi = 5.07
if self.aa == 'ASP':
pi = 2.77
if self.aa == 'GLU':
pi = 3.22
if self.aa == 'LYS':
pi = 9.74
if self.aa == 'ARG':
pi = 10.76
if self.aa == 'HIS':
pi = 7.59
self.pi = pi
def __str__(self):
return f"{self.position}:{self.aa} {self.epi}\t({self.x},{self.y},{self.z})"
def get_base_fn(fn):
return fn.split('\\')[-1].split('.')[0].upper()
def get_alpha_carbon_pdb(fn):
"""Input is pdb filename returns list of AC objects"""
epi_list = epi_anno[get_base_fn(fn)]
pd_lines = [l.split() for l in open(pdb_fn, "r").read().splitlines()if len(l.split()) > 3]
pdb_alpha = [AC(l[5],l[3],l[6],l[7],l[8],(int(l[5]) in epi_list)) for l in pd_lines if l[0] == 'ATOM' and l[2] == 'CA']
return pdb_alpha
def get_alpha_carbon_cif(fn):
"""Input is cif filename returns list of AC objects"""
epi_list = epi_anno[get_base_fn(fn)]
pd_lines = [l.split() for l in open(fn, "r").read().splitlines()if len(l.split()) > 3]
pdb_alpha = [AC(l[8],l[5],l[10],l[11],l[12],(int(l[8]) in epi_list)) for l in pd_lines if l[0] == 'ATOM' and l[3] == 'CA']
return pdb_alpha
def get_min_max(ac_list, dim):
"""return min max points for the dimension"""
return getattr(min(ac_list, key = attrgetter(dim)),dim), getattr(max(ac_list, key = attrgetter(dim)),dim)
def split_dim(ac_list, cd, dim, min, max):
"""returns a list of list of ACs split at cd in the dimesion (x,y,z)"""
split_list = []
back_edge = min
s = 0
while back_edge < max:
front_edge = back_edge + cd
n_ac = 0
slice_list = []
for ac in ac_list:
p = getattr(ac, dim)
if p >= back_edge and p < front_edge:
n_ac += 1
slice_list.append(ac)
back_edge = front_edge
split_list.append(slice_list)
s += 1
return split_list
def draw_grid(ac_list, cd):
"""returns 3d list of alpha carbons (or blank space) arragned in cubes"""
min_x, max_x = get_min_max(ac_list, 'x')
min_y, max_y = get_min_max(ac_list, 'y')
min_z, max_z = get_min_max(ac_list, 'z')
# x split
x_split = split_dim(ac_list, cd, 'x', min_x, max_x)
# y split
xy_split = []
for x_slice in x_split:
xy_split.append(split_dim(x_slice,cd,'y',min_y,max_y))
# z split
xyz_split = []
for xy_slice in xy_split:
z_list = []
for y_slice in xy_slice:
z_list.append(split_dim(y_slice, cd, 'z', min_z, max_z))
xyz_split.append(z_list)
#print dimensions
# print(f"x = {len(xyz_split)}, y = {len(xyz_split[0])}, z = {len(xyz_split[0][0])}")
return xyz_split
def grid_info(grid):
"""returns number of cubes, max number of alpha carbons per cube, and total number of alpha carbons in grid"""
grid_list = list(chain.from_iterable(list(chain.from_iterable(grid))))
n_aa = [len(cube) for cube in grid_list]
return len(grid_list), max(n_aa), sum(n_aa)
def file_to_grid(filename, cd):
"""returns grid from pdb file with specified cube dimension"""
filetype = filename.split('.')[-1]
acs = []
if filetype == "cif":
acs = get_alpha_carbon_cif(filename)
elif filetype == 'pdb':
acs = get_alpha_carbon_pdb(filename)
else:
print("Error worng file type")
return None
grid = draw_grid(acs, cd)
n_cubes, max_aa, n_ac_inGrid = grid_info(grid)
# print(f"{filename} with AC dim {cd} produced a grid with {n_cubes} cubes with {max_aa} per cube")
return grid
# def subgrid(grid):
# for ix,x in enumerate(grid):
# for iy,y in enumerate(x):
# for iz,z in enumerate(y):
# if z: #if cube is not empty
# print(f"({ix},{iy},{iz})\t{z[0]}")
#
def file_to_tfin(filename,griddim,gps):
"""from file, return subgrids for each AA and its epitope annotation. gps = grids per side of cube """
"""should probably get optimal grid dimensions and then run this on every protein"""
pro = file_to_grid(filename,griddim)
struc = get_base_fn(filename)
cubelist = []
toycube = []
for ver in range(gps):
sheet = []
for hor in range(gps):
line = []
for cell in range(gps):
line.append("empty")
sheet.append(line)
toycube.append(sheet)
# Iterate through every amino acid grid in the structure file
for x in range(len(pro)):
for y in range(len(pro[x])):
for z in range(len(pro[x][y])):
for cube in pro[x][y][z]:
if any(isinstance(cube,AC) for cube in pro[x][y][z]):
tempcube = toycube[:]
if cube.position in epi_anno[struc]:
call = 1
else:
call = 0
xs = x-int((gps-1)/2)
if xs < 0:
xs = 0
xf = x+int((gps-1)/2)+1
if xf > len(pro):
xf = len(pro)
for xcount,l in enumerate(pro[xs:xf]):
ys = y-int((gps-1)/2)
if ys < 0:
ys = 0
yf = y+int((gps-1)/2)+1
if yf > len(l):
yf = len(l)
for ycount,h in enumerate(l[ys:yf]):
zs = z-int((gps-1)/2)
if zs < 0:
zs = 0
zf = z+int((gps-1)/2)+1
if zf > len(h):
zf = len(h)
for zcount,w in enumerate(h[zs:zf]):
for obj in w:
if any(isinstance(obj,AC) for obj in w):
tempcube[xcount][ycount][zcount] = obj.aa
flatcube = []
for leng in range(len(tempcube)):
for hei in range(len(tempcube[leng])):
for wid in tempcube[leng][hei]:
flatcube.append(wid)
cubelist.append([struc,cube.position,flatcube,call])
return cubelist