-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcreate_models.py
54 lines (47 loc) · 1.81 KB
/
create_models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
from __future__ import absolute_import, division, print_function
# TensorFlow and tf.keras
import tensorflow as tf
from tensorflow import keras
# Helper libraries
import numpy as np
import matplotlib.pyplot as plt
import pickle
import random
import glob
"""
Create a two layer nueral net prediction model for each data set in allgrids_data
"""
with open("model_results.tsv", "w") as result:
result.write("data\ttest_pos\ttest_neg\tTP\tTN\tFP\tFN\n")
data_sets = glob.glob("allgrids_data//*.p")
# print(data_sets)
for data_fn in data_sets:
print(f"loading {data_fn}...")
if '11' in data_fn:
break
data = pickle.load(open(data_fn, "rb"))
data_name = data_fn.split('_')[-1].replace('.p','')
print(f"{data_name} {len(data)} data points {data[0][2].shape}")
n_pos = len([d for d in data if d[-1] == 1])
d = len(data)
class_weight = {0:1,1:(d-n_pos)/n_pos}
# print(f"class weights {class_weight}")
train_n = int(len(data) *.8)
test_n = len(data) - train_n
random.shuffle(data)
train = data[:train_n]
test = data[-test_n:]
pickle.dump(test, open(data_fn.replace('.p','_test.p'),"wb"))
train_data = np.asarray([d[2] for d in train])
train_labels = np.asarray([d[-1] for d in train])
model = keras.Sequential([
keras.layers.Dense(100, activation=tf.nn.relu),
keras.layers.Dense(2, activation=tf.nn.softmax)
])
model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
print("training model...")
n_epochs = 5
model.fit(train_data, train_labels, epochs=n_epochs,class_weight=class_weight)
model.save(f"models2/NOPE_{data_name}_100n.h5")