From 85cfc543c5af133ace7feabe109038488e63317d Mon Sep 17 00:00:00 2001 From: Filipe Braida Date: Sun, 19 Nov 2017 23:26:18 -0200 Subject: [PATCH 1/2] Rename package PLS to PLSRegressor --- .travis.yml | 6 ++-- LICENSE.md | 2 +- README.md | 50 ++++++++++++++++----------------- appveyor.yml | 4 +-- experiments/curve.jl | 6 ++-- experiments/housing.jl | 12 ++++---- src/{PLS.jl => PLSRegressor.jl} | 2 +- src/method.jl | 2 +- test/kpls_test.jl | 40 +++++++++++++------------- test/pls1_test.jl | 50 ++++++++++++++++----------------- test/pls2_test.jl | 42 +++++++++++++-------------- test/runtests.jl | 2 +- test/utils_test.jl | 30 ++++++++++---------- 13 files changed, 124 insertions(+), 124 deletions(-) rename src/{PLS.jl => PLSRegressor.jl} (92%) diff --git a/.travis.yml b/.travis.yml index cf7213b..c95a6e2 100644 --- a/.travis.yml +++ b/.travis.yml @@ -27,9 +27,9 @@ addons: ## uncomment the following lines to override the default test script #script: -# - julia -e 'Pkg.clone(pwd()); Pkg.build("PLS"); Pkg.test("PLS"; coverage=true)' +# - julia -e 'Pkg.clone(pwd()); Pkg.build("PLSRegressor"); Pkg.test("PLSRegressor"; coverage=true)' after_success: # push coverage results to Coveralls - - julia -e 'cd(Pkg.dir("PLS")); Pkg.add("Coverage"); using Coverage; Coveralls.submit(Coveralls.process_folder())' + - julia -e 'cd(Pkg.dir("PLSRegressor")); Pkg.add("Coverage"); using Coverage; Coveralls.submit(Coveralls.process_folder())' # push coverage results to Codecov - - julia -e 'cd(Pkg.dir("PLS")); Pkg.add("Coverage"); using Coverage; Codecov.submit(Codecov.process_folder())' + - julia -e 'cd(Pkg.dir("PLSRegressor")); Pkg.add("Coverage"); using Coverage; Codecov.submit(Codecov.process_folder())' diff --git a/LICENSE.md b/LICENSE.md index 0f12ade..480994f 100644 --- a/LICENSE.md +++ b/LICENSE.md @@ -1,4 +1,4 @@ -The PLS.jl package is licensed under the MIT "Expat" License: +The PLSRegressor.jl package is licensed under the MIT "Expat" License: > Copyright (c) 2017: Leandro Alvim. > diff --git a/README.md b/README.md index 98da09f..d436a42 100644 --- a/README.md +++ b/README.md @@ -1,4 +1,4 @@ -PLS.jl +PLSRegressor.jl ====== A Partial Least Squares Regressor package. Contains PLS1, PLS2 and Kernel PLS2 NIPALS algorithms. @@ -9,41 +9,41 @@ Can be used mainly for regression. However, for classification task, binarizing |:-------------------------------:|:-----------------------------------------:| | [![][pkg-0.6-img]][pkg-0.6-url] | [![][travis-img]][travis-url] [![][codecov-img]][codecov-url] | -[travis-img]: https://travis-ci.org/lalvim/PLS.jl.svg?branch=master -[travis-url]: https://travis-ci.org/lalvim/PLS.jl +[travis-img]: https://travis-ci.org/lalvim/PLSRegressor.jl.svg?branch=master +[travis-url]: https://travis-ci.org/lalvim/PLSRegressor.jl -[codecov-img]: http://codecov.io/github/lalvim/PLS.jl/coverage.svg?branch=master -[codecov-url]: http://codecov.io/github/lalvim/PLS.jl?branch=master +[codecov-img]: http://codecov.io/github/lalvim/PLSRegressor.jl/coverage.svg?branch=master +[codecov-url]: http://codecov.io/github/lalvim/PLSRegressor.jl?branch=master -[issues-url]: https://github.com/lalvim/PLS.jl/issues +[issues-url]: https://github.com/lalvim/PLSRegressor.jl/issues -[pkg-0.6-img]: http://pkg.julialang.org/badges/PLS_0.6.svg -[pkg-0.6-url]: http://pkg.julialang.org/?pkg=PLS&ver=0.6 -[pkg-0.7-img]: http://pkg.julialang.org/badges/PLS_0.7.svg -[pkg-0.7-url]: http://pkg.julialang.org/?pkg=PLS&ver=0.7 +[pkg-0.6-img]: http://pkg.julialang.org/badges/PLSRegressor_0.6.svg +[pkg-0.6-url]: http://pkg.julialang.org/?pkg=PLSRegressor&ver=0.6 +[pkg-0.7-img]: http://pkg.julialang.org/badges/PLSRegressor_0.7.svg +[pkg-0.7-url]: http://pkg.julialang.org/?pkg=PLSRegressor&ver=0.7 Install ======= - Pkg.add("PLS") + Pkg.add("PLSRegressor") Using ===== - using PLS + using PLSRegressor Examples ======== - using PLS + using PLSRegressor # learning a single target X_train = [1 2; 2 4; 4 6.0] Y_train = [4; 6; 8.0] X_test = [6 8; 8 10; 10 12.0] - model = PLS.fit(X_train,Y_train,nfactors=2) - Y_test = PLS.predict(model,X_test) + model = PLSRegressor.fit(X_train,Y_train,nfactors=2) + Y_test = PLSRegressor.predict(model,X_test) print("[PLS1] mae error : $(mean(abs.(Y_test .- Y_pred)))") @@ -53,23 +53,23 @@ Examples Y_train = [2 4;4 6;6 8.0] X_test = [6 8; 8 10; 10 12.0] - model = PLS.fit(X_train,Y_train,nfactors=2) - Y_test = PLS.predict(model,X_test) + model = PLSRegressor.fit(X_train,Y_train,nfactors=2) + Y_test = PLSRegressor.predict(model,X_test) print("[PLS2] mae error : $(mean(abs.(Y_test .- Y_pred)))") # nonlinear learning with multiple targets - model = PLS.fit(X_train,Y_train,nfactors=2,kernel="rbf",width=0.1) - Y_test = PLS.predict(model,X_test) + model = PLSRegressor.fit(X_train,Y_train,nfactors=2,kernel="rbf",width=0.1) + Y_test = PLSRegressor.predict(model,X_test) print("[KPLS] mae error : $(mean(abs.(Y_test .- Y_pred)))") # if you want to save your model - PLS.save(model,filename="/tmp/pls_model.jld") + PLSRegressor.save(model,filename="/tmp/pls_model.jld") # if you want to load back your model - model = PLS.load(filename="/tmp/pls_model.jld") + model = PLSRegressor.load(filename="/tmp/pls_model.jld") What is Implemented @@ -87,7 +87,7 @@ What is Upcoming Method Description ======= -* PLS.fit - learns from input data and its related single target +* PLSRegressor.fit - learns from input data and its related single target * X::Matrix{: Date: Sun, 19 Nov 2017 23:29:15 -0200 Subject: [PATCH 2/2] Remove travis to 0.7 version --- .travis.yml | 1 - 1 file changed, 1 deletion(-) diff --git a/.travis.yml b/.travis.yml index c95a6e2..7244f96 100644 --- a/.travis.yml +++ b/.travis.yml @@ -5,7 +5,6 @@ os: - osx julia: - 0.6 - - nightly notifications: email: false git: