-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathapp.py
97 lines (76 loc) · 3.61 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
from flask import Flask, request
import pandas as pd
import numpy as np
import json
import pickle
import os
import requests
from os import getenv
from dotenv import load_dotenv
from sklearn.preprocessing import StandardScaler
from .preprocess import Magic
from .sentiment import TwitterSentiment
load_dotenv()
def create_app():
'''
Create Flask App
'''
APP = Flask(__name__)
model = pickle.load(open("model.p", "rb"))
def generate_df(ticker):
macd = 'https://www.alphavantage.co/query?function=MACD&symbol=' + ticker + '&interval=daily&series_type=open&apikey=SXG08DL4S2EW8SKC'
response1 = requests.get(macd)
if "Note" in response1.json().keys():
return (response1.json()["Note"])
df_macd = pd.DataFrame.from_dict(response1.json()['Technical Analysis: MACD']).T
stoch = 'https://www.alphavantage.co/query?function=STOCH&symbol=' + ticker + '&interval=daily&apikey=SXG08DL4S2EW8SKC'
response2 = requests.get(stoch)
if "Note" in response2.json().keys():
return (response2.json()["Note"])
df_stoch = pd.DataFrame.from_dict(response2.json()['Technical Analysis: STOCH']).T
aroon = 'https://www.alphavantage.co/query?function=AROONOSC&symbol=' + ticker + '&interval=daily&time_period=10&apikey=SXG08DL4S2EW8SKC'
response4 = requests.get(aroon)
if "Note" in response4.json().keys():
return (response4.json()["Note"])
df_aroon = pd.DataFrame.from_dict(response4.json()['Technical Analysis: AROONOSC']).T
dx = 'https://www.alphavantage.co/query?function=DX&symbol=' + ticker + '&interval=daily&time_period=10&apikey=SXG08DL4S2EW8SKC'
response5 = requests.get(dx)
if "Note" in response5.json().keys():
return (response5.json()["Note"])
df_dx = pd.DataFrame.from_dict(response5.json()['Technical Analysis: DX']).T
url = 'https://www.alphavantage.co/query?function=TIME_SERIES_DAILY&symbol=' + ticker + '&interval=5min&outputsize=full&apikey=SXG08DL4S2EW8SKC'
response6 = requests.get(url)
if "Note" in response6.json().keys():
return (response6.json()["Note"])
df = pd.DataFrame.from_dict(response6.json()['Time Series (Daily)']).T
df = df.join(df_macd)
df = df.join(df_stoch)
df = df.join(df_aroon)
df = df.join(df_dx)
return df
@APP.route('/')
@APP.route('/api',methods=['POST'])
def hello_world(ticker):
inp = ticker
if request.method == 'POST':
inp = request.values['ticker']
market_df = generate_df(inp)
if type(market_df)==str:
return market_df
market_df = market_df.dropna()
X = market_df[['5. volume', 'MACD', 'AROONOSC','MACD_Hist', 'MACD_Signal', 'DX', 'SlowD', 'SlowK']]
sc = StandardScaler()
X = sc.fit_transform(X)
y_prebro = model.predict_proba(X[0].reshape(1, -1))
magic = Magic(ticker)
historical = magic.output_historical()
future = magic.output_future()
twitter = TwitterSentiment(ticker)
sentiment = twitter.output_twitter()
json_obj = {'TA': {'sell':y_prebro[0][0], 'hold':y_prebro[0][1], 'buy':y_prebro[0][2]},
'Sentiment': {'sell':sentiment['Sell'], 'hold':sentiment['Hold'], 'buy':sentiment['Buy']},
'Historical': {'sell':historical['Sell'], 'hold':historical['Hold'], 'buy':historical['Buy']},
'Future': {'sell':future['Sell'], 'hold':future['Hold'], 'buy':future['Buy']}
}
response = json.dumps(json_obj)
return response