forked from diyjac/SDC-P5
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathchogtrainingLUV.py
244 lines (217 loc) · 10.1 KB
/
chogtrainingLUV.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
import matplotlib.image as mpimg
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
import numpy as np
import cv2
import glob
import time
from tqdm import tqdm
from sklearn.svm import LinearSVC
from sklearn.preprocessing import StandardScaler
from skimage.feature import hog
from sklearn.externals import joblib
# NOTE: the next import is only valid for scikit-learn version >= 0.18
# for scikit-learn <= 0.17 use:
# from sklearn.cross_validation import train_test_split
from sklearn.model_selection import train_test_split
# Define a function to compute binned color features
def bin_spatial(img, size=(32, 32)):
# Use cv2.resize().ravel() to create the feature vector
features = cv2.resize(img, size).ravel()
# Return the feature vector
return features
# Define a function to compute color histogram features
def color_hist(img, nbins=32, bins_range=(0, 256)):
# Compute the histogram of the color channels separately
channel1_hist = np.histogram(img[:,:,0], bins=nbins, range=bins_range)
channel2_hist = np.histogram(img[:,:,1], bins=nbins, range=bins_range)
channel3_hist = np.histogram(img[:,:,2], bins=nbins, range=bins_range)
# Concatenate the histograms into a single feature vector
hist_features = np.concatenate((channel1_hist[0], channel2_hist[0], channel3_hist[0]))
# Return the individual histograms, bin_centers and feature vector
return hist_features
# Define a function to return HOG features and visualization
def get_hog_features(img, orient, pix_per_cell, cell_per_block,
vis=False, feature_vec=True):
# Call with two outputs if vis==True
if vis == True:
features, hog_image = hog(img, orientations=orient, pixels_per_cell=(pix_per_cell, pix_per_cell),
cells_per_block=(cell_per_block, cell_per_block), transform_sqrt=True,
visualise=vis, feature_vector=feature_vec)
return features, hog_image
# Otherwise call with one output
else:
features = hog(img, orientations=orient, pixels_per_cell=(pix_per_cell, pix_per_cell),
cells_per_block=(cell_per_block, cell_per_block), transform_sqrt=True,
visualise=vis, feature_vector=feature_vec)
return features
# Define a function to extract features from a list of images
# Have this function call bin_spatial() and color_hist()
def extract_features(imgs, cspace='LUV', spatial_size=(32, 32),
hist_bins=32, hist_range=(0, 256), orient=9,
pix_per_cell=8, cell_per_block=2, hog_channel=0, datatype='', visualize=False):
# Create a list to append feature vectors to
features = []
# Iterate through the list of images
images_pbar = tqdm(range(len(imgs)), desc='Loading '+datatype+' Dataset', unit=' features')
for i in images_pbar:
file = imgs[i]
# Read in each one by one
image = cv2.cvtColor(cv2.imread(file), cv2.COLOR_BGR2RGB)
# apply color conversion if other than 'RGB'
if cspace != 'RGB':
if cspace == 'LUV':
feature_image = cv2.cvtColor(image, cv2.COLOR_RGB2HSV)
elif cspace == 'LUV':
feature_image = cv2.cvtColor(image, cv2.COLOR_RGB2LUV)
elif cspace == 'HLS':
feature_image = cv2.cvtColor(image, cv2.COLOR_RGB2HLS)
elif cspace == 'YUV':
feature_image = cv2.cvtColor(image, cv2.COLOR_RGB2YUV)
else: feature_image = np.copy(image)
# Apply bin_spatial() to get spatial color features
spatial_features = bin_spatial(feature_image, size=spatial_size)
# Apply color_hist() also with a color space option now
hist_features = color_hist(feature_image, nbins=hist_bins, bins_range=hist_range)
# Call get_hog_features() with vis=False, feature_vec=True
if visualize:
hog_features, hog_image = get_hog_features(feature_image[:,:,hog_channel], orient,
pix_per_cell, cell_per_block, vis=visualize, feature_vec=True)
# print("hog_image: ", hog_image.shape, type(hog_image[0][0]), np.min(hog_image), np.max(hog_image))
# print("image: ", image.shape, type(image[0][0][0]), np.min(image), np.max(image))
minhog = np.min(hog_image)
hog_image = hog_image - minhog
maxhog = np.max(hog_image)
hog_image = ((hog_image/maxhog)*255).astype(np.uint8)
return image, hog_image
else:
hog_features = get_hog_features(feature_image[:,:,hog_channel], orient,
pix_per_cell, cell_per_block, vis=False, feature_vec=True)
# Append the new feature vector to the features list
features.append(np.concatenate((spatial_features, hist_features, hog_features)))
# Return list of feature vectors
return features
# Define a way for us to write out a sample of the HOG
def drawPlots(imagefile, sampleTitle, orient, pix_per_cell, cell_per_block, trainScore, testScore, carimage, carhog, notcarimage, notcarhog, deltaTime):
print("saving sample image and hogs to ", imagefile)
# Setup plot
fig = plt.figure(figsize=(10, 3))
w_ratios = [1 for n in range(5)]
h_ratios = [1 for n in range(1)]
grid = gridspec.GridSpec(1, 5, wspace=0.0, hspace=0.0, width_ratios=w_ratios, height_ratios=h_ratios)
i = 0
# draw the images
# next image
sampleTitleWScores = '%s\n Orientation: %d\n Pix_per_cell: %d\n Cell_per_block: %d\n Train Accuracy:\n %10.9f\n Test Accuracy:\n %10.9f\n Decision Time:\n %10.9f'%(sampleTitle, orient, pix_per_cell, cell_per_block, trainScore, testScore, deltaTime)
ax = plt.Subplot(fig, grid[i])
ax.text(0.1,0.4, sampleTitleWScores, fontsize=8)
ax.set_xticks([])
ax.set_yticks([])
for sp in ax.spines.values():
sp.set_visible(False)
fig.add_subplot(ax)
i += 1
ax = plt.Subplot(fig, grid[i])
ax.imshow(carimage)
if i==1:
ax.set_title('Sample Car Image', size=8)
ax.set_xticks([])
ax.set_yticks([])
fig.add_subplot(ax)
i += 1
ax = plt.Subplot(fig, grid[i])
ax.imshow(carhog, cmap='gray')
if i==2:
ax.set_title('Sample Car HOG', size=8)
ax.set_xticks([])
ax.set_yticks([])
fig.add_subplot(ax)
i += 1
ax = plt.Subplot(fig, grid[i])
ax.imshow(notcarimage)
if i==3:
ax.set_title('Sample Noncar Image', size=8)
ax.set_xticks([])
ax.set_yticks([])
fig.add_subplot(ax)
i += 1
ax = plt.Subplot(fig, grid[i])
ax.imshow(notcarhog, cmap='gray')
if i==4:
ax.set_title('Sample Noncar HOG', size=8)
ax.set_xticks([])
ax.set_yticks([])
fig.add_subplot(ax)
i += 1
plt.savefig(imagefile)
# Divide up into cars and notcars
# NOTE: Using our own collected data from 'birds-eye' view
cars = glob.glob('../vehicles/*/*/*.jpg')
notcars = glob.glob('../non-vehicles/*/*/*.jpg')
print("number of original car samples: ", len(cars))
print("number of original non-car samples: ", len(notcars))
orient = 9
pix_per_cell = 8
cell_per_block = 2
t=time.time()
car_features = extract_features(cars, cspace='LUV', spatial_size=(32, 32),
orient=orient, pix_per_cell=pix_per_cell, cell_per_block=cell_per_block,
hist_bins=32, hist_range=(0, 256), hog_channel=1, datatype='Car')
notcar_features = extract_features(notcars, cspace='LUV', spatial_size=(32, 32),
orient=orient, pix_per_cell=pix_per_cell, cell_per_block=cell_per_block,
hist_bins=32, hist_range=(0, 256), hog_channel=1, datatype='Noncar')
t2 = time.time()
print(t2-t, 'Seconds to load dataset...')
t=time.time()
print("Data loaded, now scaling and splitting dataset...")
# Create an array stack of feature vectors
X = np.vstack((car_features, notcar_features)).astype(np.float64)
# Fit a per-column scaler
X_scaler = StandardScaler().fit(X)
# Apply the scaler to X
scaled_X = X_scaler.transform(X)
# Define the labels vector
y = np.hstack((np.ones(len(car_features)), np.zeros(len(notcar_features))))
# Split up data into randomized training and test sets
rand_state = np.random.randint(0, 100)
X_train, X_test, y_train, y_test = train_test_split(
scaled_X, y, test_size=0.2, random_state=rand_state)
t2 = time.time()
print(t2-t, 'Seconds to scale and split dataset...')
print("training set size:", len(X_train))
print("testing set size:", len(X_test))
# Use a linear SVC
svc = LinearSVC()
# Check the training time for the SVC
t=time.time()
svc.fit(X_train, y_train)
t2 = time.time()
print(t2-t, 'Seconds to train SVC...')
# Check the score of the SVC
trainingScore = svc.score(X_train, y_train)
testingScore = svc.score(X_test, y_test)
print('Train Accuracy of SVC = ', trainingScore)
print('Test Accuracy of SVC = ', testingScore)
# Check the prediction time for a single sample
t=time.time()
confidence = svc.decision_function(X_test[0].reshape(1, -1))
t2 = time.time()
deltatime = t2-t
print(deltatime, 'Seconds to run decision_function with SVC')
# versionName for this version
versionName = 'CHOGLUV1'
# saving trained SVC model:
trained_model = './trained/'+versionName+'.pkl'
trained_scalar = './trained/scaler'+versionName+'.pkl'
visualfile = './visualized/'+versionName+'.jpg'
print('saving trained model to', trained_model)
joblib.dump(svc, trained_model)
print('saving trained scalar to', trained_scalar)
joblib.dump(X_scaler, trained_scalar)
carimage, carhog = extract_features([cars[0]], cspace='LUV', spatial_size=(32, 32),
orient=orient, pix_per_cell=pix_per_cell, cell_per_block=cell_per_block,
hist_bins=32, hist_range=(0, 256), hog_channel=1, datatype='Car', visualize=True)
notcarimage, notcarhog = extract_features([notcars[0]], cspace='LUV', spatial_size=(32, 32),
orient=orient, pix_per_cell=pix_per_cell, cell_per_block=cell_per_block,
hist_bins=32, hist_range=(0, 256), hog_channel=1, datatype='Noncar', visualize=True)
drawPlots(visualfile, versionName, orient, pix_per_cell, cell_per_block, trainingScore, testingScore, carimage, carhog, notcarimage, notcarhog, deltatime)