From e439fdcbd55c360b32bf7f9b1ad80df3da09ae22 Mon Sep 17 00:00:00 2001 From: Ashley Mae Conard Date: Mon, 20 Nov 2023 09:09:59 -0500 Subject: [PATCH] Update README.md --- README.md | 24 ++++++++++++------------ 1 file changed, 12 insertions(+), 12 deletions(-) diff --git a/README.md b/README.md index 09d00b6..17f3fc8 100644 --- a/README.md +++ b/README.md @@ -88,22 +88,22 @@ Multioviz has three usages: To (1) visualize ranked molecular features as GRNs style="display: inline-block; margin: 0 auto; max-width: 1000px"> ### C. Integrate computational method -- M: Computational method performs feature selection and prioritization -- I: Required input datasets for computational method -- Script with runModel() function that has parameters for I and that outputs ML1, ML2, and Map - - Contains parameters for I - - Runs the user's ranking model - - Returns a list of ML1, ML2, and Map +- Computational method performs feature selection and prioritization +- The script with your method should call ```runModel()``` function that + - has parameters for required inputs (see B. Perturb figure depicting X, y, mask) (# step 1) + - runs the user's method (# step 2) + - returns ML1, ML2, and Map (see B. Perturb figure depicting molecular level 1 (SNPs) (ML1), molecular level 2 (genes) (ML2), and mapping between molecular levels). (# step 3) +As an example, the script could look something like, where we run BANNs as our example computational method: ``` -runModel <- function(X_input, y_input, mask_input) { +runModel <- function(X_input, y_input, mask_input) { # step 1 - res = BANN(X_input, mask_input, y_input, centered=FALSE, show_progress = TRUE) - - # convert method output to ranking and mapping dataframes + # run your computational method + res = BANN(X_input, mask_input, y_input, centered=FALSE, show_progress = TRUE) # 2 + # convert method output to ML1, ML2, and map lst = list() - lst$ML1 = ML1_pips + lst$ML1 = ML1_pips # step 3 lst$ML2 = ML2_pips lst$map = btw_ML_map return(lst) @@ -111,7 +111,7 @@ runModel <- function(X_input, y_input, mask_input) { ``` ## A. Visualize ranked molecular features as a GRN -To faciliate *in silico* hypothesis generation, Multioviz allows users to visualize ranked lists and maps of enriched molecular features for a given phenotypic state as GRNs. +To facilitate *in silico* hypothesis generation, Multioviz allows users to visualize ranked lists and maps of enriched molecular features for a given phenotypic state as GRNs.