forked from ROCm/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
accuracy_op.cc
82 lines (74 loc) · 2.55 KB
/
accuracy_op.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
#include "caffe2/operators/accuracy_op.h"
namespace caffe2 {
template <>
bool AccuracyOp<float, CPUContext>::RunOnDevice() {
auto& X = Input(PREDICTION);
auto& label = Input(LABEL);
CAFFE_ENFORCE_EQ(X.dim(), 2);
int N = X.dim32(0);
int D = X.dim32(1);
CAFFE_ENFORCE_EQ(label.dim(), 1);
CAFFE_ENFORCE_EQ(label.dim32(0), N);
auto* Y = Output(0, vector<int64_t>(), at::dtype<float>());
const auto* Xdata = X.data<float>();
const auto* labelData = label.data<int>();
const int top_k = top_k_;
int correct = 0;
// it's equivalent to using a stable sorting algorithm to sort the
// classes (with their predictions as key) and then check whether
// the label is within the first top_k slots.
for (int i = 0; i < N; ++i) {
auto label_i = labelData[i];
auto label_pred = Xdata[i * D + label_i];
int ngt = 1;
for (int j = 0; j < D; ++j) {
auto pred = Xdata[i * D + j];
if ((pred > label_pred) || (pred == label_pred && j < label_i)) {
if (++ngt > top_k) {
break;
}
}
}
if (ngt <= top_k) {
++correct;
}
}
CAFFE_ENFORCE_LE(correct, N);
// NOLINTNEXTLINE(cppcoreguidelines-narrowing-conversions,bugprone-narrowing-conversions)
*(Y->template mutable_data<float>()) = static_cast<float>(correct) / N;
return true;
}
REGISTER_CPU_OPERATOR(Accuracy, AccuracyOp<float, CPUContext>);
OPERATOR_SCHEMA(Accuracy)
.NumInputs(2)
.NumOutputs(1)
.ScalarType(TensorProto::FLOAT)
.SetDoc(R"DOC(
Accuracy takes two inputs- predictions and labels, and returns a float
accuracy value for the batch. Predictions are expected in the form of 2-D tensor
containing a batch of scores for various classes, and labels are expected in the
form of 1-D tensor containing true label indices of samples in the batch. If
the score for the label index in the predictions is the highest among all
classes, it is considered a correct prediction.
)DOC")
.Arg(
"top_k",
"Count as correct by comparing the true label to the top k scoring "
"classes (default 1: only compare to the top scoring class i.e. argmax)")
.Input(
0,
"predictions",
"2-D tensor (Tensor<float>) of size "
"(num_batches x num_classes) containing scores")
.Input(
1,
"labels",
"1-D tensor (Tensor<float>) of size (num_batches) having "
"the indices of true labels")
.Output(
0,
"accuracy",
"1-D tensor (Tensor<float>) of size 1 containing "
"accuracy");
SHOULD_NOT_DO_GRADIENT(Accuracy);
} // namespace caffe2