forked from ROCm/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
affine_channel_op.cu
152 lines (135 loc) · 4.35 KB
/
affine_channel_op.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
#include "caffe2/operators/affine_channel_op.h"
#include "caffe2/utils/cub_namespace.cuh"
#include <cub/block/block_reduce.cuh>
#include "caffe2/core/context_gpu.h"
namespace caffe2 {
namespace {
template <typename T>
using BlockReduce = cub::BlockReduce<T, CAFFE_CUDA_NUM_THREADS>;
template <typename T, StorageOrder kOrder>
__global__ void AffineChannelScaleBiasBackwardCUDAKernel(
const int N,
const int C,
const int HxW,
const T* dY,
const T* X,
T* dscale,
T* dbias) {
const int outer_size = C;
const int inner_size = N * HxW;
__shared__ typename BlockReduce<T>::TempStorage ds_storage;
__shared__ typename BlockReduce<T>::TempStorage db_storage;
for (int i = blockIdx.x; i < outer_size; i += gridDim.x) {
T ds_sum = 0;
T db_sum = 0;
for (int j = threadIdx.x; j < inner_size; j += blockDim.x) {
const int index = kOrder == StorageOrder::NCHW
? (j / HxW * C + i) * HxW + j % HxW
: j * outer_size + i;
#if __CUDA_ARCH__ >= 350
ds_sum += __ldg(dY + index) * __ldg(X + index);
db_sum += __ldg(dY + index);
#else
ds_sum += dY[index] * X[index];
db_sum += dY[index];
#endif
}
ds_sum = BlockReduce<T>(ds_storage).Reduce(ds_sum, cub::Sum());
db_sum = BlockReduce<T>(db_storage).Reduce(db_sum, cub::Sum());
if (threadIdx.x == 0) {
dscale[i] = ds_sum;
dbias[i] = db_sum;
}
__syncthreads();
}
}
} // namespace
template <>
bool AffineChannelGradientOp<float, CUDAContext>::RunOnDeviceWithOrderNCHW() {
const auto& dY = Input(0);
const auto& scale = is_learnable_ ? Input(2) : Input(1);
auto* dX = Output(0, dY.sizes(), at::dtype<float>());
const int N = dY.dim32(0);
const int C = dY.dim32(1);
const int HxW = dY.numel() / (N * C);
const float* dY_data = dY.data<float>();
const float* scale_data = scale.data<float>();
const std::array<int, 3> X_dims = {N, C, HxW};
const std::array<int, 3> scale_dims = {1, C, 1};
math::Mul<float, CUDAContext>(
3,
X_dims.data(),
3,
scale_dims.data(),
dY_data,
scale_data,
dX->template mutable_data<float>(),
&context_);
if (is_learnable_) {
const auto& X = Input(1);
const float* X_data = X.data<float>();
auto* dscale = Output(1, scale.sizes(), at::dtype<float>());
auto* dbias = Output(2, scale.sizes(), at::dtype<float>());
const int outer_size = N * HxW;
AffineChannelScaleBiasBackwardCUDAKernel<float, StorageOrder::NCHW>
<<<std::min(outer_size, CAFFE_MAXIMUM_NUM_BLOCKS),
CAFFE_CUDA_NUM_THREADS,
0,
context_.cuda_stream()>>>(
N,
C,
HxW,
dY_data,
X_data,
dscale->template mutable_data<float>(),
dbias->template mutable_data<float>());
C10_CUDA_KERNEL_LAUNCH_CHECK();
}
return true;
}
template <>
bool AffineChannelGradientOp<float, CUDAContext>::RunOnDeviceWithOrderNHWC() {
const auto& dY = Input(0);
const auto& scale = is_learnable_ ? Input(2) : Input(1);
auto* dX = Output(0, dY.sizes(), at::dtype<float>());
const int ndim = dY.dim();
const int C = dY.dim32(ndim - 1);
const int rows = dY.numel() / C;
const int cols = C;
const float* dY_data = dY.data<float>();
const float* scale_data = scale.data<float>();
math::RowwiseMul<float, CUDAContext>(
rows,
cols,
dY_data,
scale_data,
dX->template mutable_data<float>(),
&context_);
if (is_learnable_) {
const auto& X = Input(1);
const float* X_data = X.data<float>();
const int N = X.dim32(0);
const int HxW = rows / N;
auto* dscale = Output(1, scale.sizes(), at::dtype<float>());
auto* dbias = Output(2, scale.sizes(), at::dtype<float>());
AffineChannelScaleBiasBackwardCUDAKernel<float, StorageOrder::NHWC>
<<<std::min(rows, CAFFE_MAXIMUM_NUM_BLOCKS),
CAFFE_CUDA_NUM_THREADS,
0,
context_.cuda_stream()>>>(
N,
C,
HxW,
dY_data,
X_data,
dscale->template mutable_data<float>(),
dbias->template mutable_data<float>());
C10_CUDA_KERNEL_LAUNCH_CHECK();
}
return true;
}
REGISTER_CUDA_OPERATOR(AffineChannel, AffineChannelOp<float, CUDAContext>);
REGISTER_CUDA_OPERATOR(
AffineChannelGradient,
AffineChannelGradientOp<float, CUDAContext>);
} // namespace caffe2