forked from ROCm/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
batch_permutation_op_gpu_test.cc
270 lines (230 loc) · 7.72 KB
/
batch_permutation_op_gpu_test.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
#include "caffe2/core/context_gpu.h"
#include "caffe2/core/flags.h"
#include "caffe2/operators/batch_permutation_op.h"
#include "caffe2/utils/eigen_utils.h"
#include "caffe2/utils/math.h"
#include "gtest/gtest.h"
namespace caffe2 {
namespace {
// Add the vector as an input to a Workspace depending on the context of the
// workspace
template <typename T>
void AddInputCPU(
const vector<int64_t>& shape,
const vector<T>& values,
const string& name,
Workspace* ws) {
Blob* blob = ws->CreateBlob(name);
auto* tensor = BlobGetMutableTensor(blob, CPU);
tensor->Resize(shape);
EigenVectorMap<T> tensor_vec(tensor->mutable_data<T>(), tensor->numel());
tensor_vec.array() = Eigen::Map<const Eigen::Matrix<T, Eigen::Dynamic, 1>>{
values.data(), static_cast<int>(values.size())};
}
template <typename T>
void AddInputGPU(
const vector<int64_t>& shape,
const vector<T>& values,
const string& name,
Workspace* ws) {
Tensor tmp(shape, CPU);
EigenVectorMap<T> tmp_vec(tmp.mutable_data<T>(), tmp.numel());
tmp_vec.array() = Eigen::Map<const Eigen::Matrix<T, Eigen::Dynamic, 1>>{
values.data(), static_cast<int>(values.size())};
Blob* blob = ws->CreateBlob(name);
auto* tensor = BlobGetMutableTensor(blob, CUDA);
tensor->CopyFrom(tmp);
}
// Overload 4 different signatures for AddInput because clang does not allow
// template <typename T>
// void AddInput<CPUContext>(...) {...}
template <typename T, class Context>
void AddInput(
const vector<int64_t>& shape,
const vector<T>& values,
const string& name,
Workspace* ws);
template <>
void AddInput<int, CPUContext>(
const vector<int64_t>& shape,
const vector<int>& values,
const string& name,
Workspace* ws) {
AddInputCPU<int>(shape, values, name, ws);
}
template <>
void AddInput<float, CPUContext>(
const vector<int64_t>& shape,
const vector<float>& values,
const string& name,
Workspace* ws) {
AddInputCPU<float>(shape, values, name, ws);
}
template <>
void AddInput<int, CUDAContext>(
const vector<int64_t>& shape,
const vector<int>& values,
const string& name,
Workspace* ws) {
AddInputGPU<int>(shape, values, name, ws);
}
template <>
void AddInput<float, CUDAContext>(
const vector<int64_t>& shape,
const vector<float>& values,
const string& name,
Workspace* ws) {
AddInputGPU<float>(shape, values, name, ws);
}
template <class Context>
DeviceTypeProto GetDeviceType() {
return PROTO_CPU;
}
template <>
DeviceTypeProto GetDeviceType<CUDAContext>() {
return PROTO_CUDA;
}
// Create a BatchPermutationOp with the given inputs (actual values are
// generated sequentially) and run it
template <class Context>
void CreateAndRun(
TensorCPU* outResult,
int N,
vector<int64_t>& shape,
vector<float>& features,
vector<int> indices) {
Workspace ws;
AddInput<float, Context>(shape, features, "X", &ws);
AddInput<int, Context>(vector<int64_t>{N}, indices, "indices", &ws);
OperatorDef def;
def.set_name("test");
def.set_type("BatchPermutation");
def.add_input("X");
def.add_input("indices");
def.add_output("Y");
def.mutable_device_option()->set_device_type(GetDeviceType<Context>());
unique_ptr<OperatorBase> op = CreateOperator(def, &ws);
EXPECT_NE(nullptr, op.get());
EXPECT_TRUE(op->Run());
Blob* Y_blob = ws.GetBlob("Y");
EXPECT_NE(nullptr, Y_blob);
auto& Y = Y_blob->Get<Tensor>();
outResult->CopyFrom(Y);
}
// Create a BatchPermutationOp with the given inputs (actual values are
// generated sequentially) and run it
template <class Context>
void CreateAndRunGradient(
TensorCPU* outResult,
int N,
vector<int64_t>& shape,
vector<float>& features,
vector<int> indices) {
Workspace ws;
AddInput<float, Context>(shape, features, "dY", &ws);
AddInput<int, Context>(vector<int64_t>{N}, indices, "indices", &ws);
OperatorDef def;
def.set_name("test");
def.set_type("BatchPermutationGradient");
def.add_input("indices");
def.add_input("dY");
def.add_output("dX");
def.mutable_device_option()->set_device_type(GetDeviceType<Context>());
unique_ptr<OperatorBase> op = CreateOperator(def, &ws);
EXPECT_NE(nullptr, op.get());
EXPECT_TRUE(op->Run());
Blob* Y_blob = ws.GetBlob("dX");
EXPECT_NE(nullptr, Y_blob);
auto& Y = Y_blob->Get<Tensor>();
outResult->CopyFrom(Y);
}
// Check that the CPU and GPU implementations provide the exact same results
void CheckCPUGPUEqual(vector<int64_t> shape, vector<int> indices) {
// Prepare input data
EXPECT_GT(shape.size(), 1);
int N = shape[0];
int input_size = 1;
for (auto k : shape) {
input_size *= k;
}
int K = N ? input_size / N : 0;
vector<float> features(input_size);
std::iota(features.begin(), features.end(), 0);
// CPU outputs
Tensor y_cpu{CPU};
Tensor y_cpu_grad{CPU};
// CPU BatchPermutation
CreateAndRun<CPUContext>(&y_cpu, N, shape, features, indices);
// CPU BatchPermutationGradient
CreateAndRunGradient<CPUContext>(&y_cpu_grad, N, shape, features, indices);
// Check CPU output values
for (auto i = 0; i < indices.size(); ++i) {
for (auto k = 0; k < K; ++k) {
EXPECT_NEAR(
y_cpu.data<float>()[indices[i] * K + k], features[i * K + k], 1e4);
EXPECT_NEAR(
y_cpu_grad.data<float>()[i * K + k],
features[indices[i] * K + k],
1e4);
}
}
if (!caffe2::HasCudaGPU()) {
VLOG(2) << "No CudaGPU found. Skip GPU test." << std::endl;
return;
}
// GPU outputs
Tensor y_gpu{CPU};
Tensor y_gpu_grad{CPU};
// GPU BatchPermutation
CreateAndRun<CPUContext>(&y_gpu, N, shape, features, indices);
// Compare CPU and GPU BatchPermutation outputs
EXPECT_EQ(y_cpu.sizes(), y_gpu.sizes());
ConstEigenVectorMap<float> y_cpu_vec(y_cpu.data<float>(), y_cpu.numel());
ConstEigenVectorMap<float> y_gpu_vec(y_gpu.data<float>(), y_gpu.numel());
EXPECT_TRUE(y_cpu_vec.isApprox(y_gpu_vec));
// GPU BatchPermutationGradient
CreateAndRunGradient<CUDAContext>(&y_gpu_grad, N, shape, features, indices);
// Check GPU outputs
for (auto i = 0; i < indices.size(); ++i) {
for (auto k = 0; k < K; ++k) {
EXPECT_NEAR(
y_gpu.data<float>()[indices[i] * K + k], features[i * K + k], 1e4);
EXPECT_NEAR(
y_gpu_grad.data<float>()[i * K + k],
features[indices[i] * K + k],
1e4);
}
}
// Compare CPU and GPU BatchPermutationGradient outputs
EXPECT_EQ(y_cpu_grad.sizes(), y_gpu_grad.sizes());
ConstEigenVectorMap<float> y_cpu_vec_grad(
y_cpu_grad.data<float>(), y_cpu_grad.numel());
ConstEigenVectorMap<float> y_gpu_vec_grad(
y_gpu_grad.data<float>(), y_gpu_grad.numel());
EXPECT_TRUE(y_cpu_vec_grad.isApprox(y_gpu_vec_grad));
}
} // namespace
TEST(BatchPermutationTest, CHECKCPUGPUEqualGenericDimension) {
auto t0 = std::chrono::high_resolution_clock::now();
int batch_size = 8;
int max_dimension = 6;
vector<int64_t> shape = vector<int64_t>{batch_size};
auto seed = std::chrono::system_clock::now().time_since_epoch().count();
std::default_random_engine generator(seed);
for (int i = 2; i < max_dimension; ++i) {
std::uniform_int_distribution<> dis(1, i);
shape.push_back(dis(generator));
CheckCPUGPUEqual(shape, vector<int>{0, 1, 2, 3, 4, 5, 6, 7});
CheckCPUGPUEqual(shape, vector<int>{7, 6, 5, 4, 3, 2, 1, 0});
CheckCPUGPUEqual(shape, vector<int>{1, 3, 5, 7, 0, 2, 4, 6});
CheckCPUGPUEqual(shape, vector<int>{4, 5, 6, 7, 0, 1, 2, 3});
CheckCPUGPUEqual(shape, vector<int>{3, 1, 5, 7, 6, 2, 4, 0});
}
CheckCPUGPUEqual({0, 128}, vector<int>{});
auto t1 = std::chrono::high_resolution_clock::now();
double elapsed =
std::chrono::duration_cast<std::chrono::milliseconds>(t1 - t0).count();
VLOG(2) << "Time elapsed: " << elapsed << " ms" << std::endl;
return;
}
} // namespace caffe2