generated from streamlit/streamlit-hello
-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathingest.py
203 lines (187 loc) · 6.09 KB
/
ingest.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
from pathlib import Path
from typing import List
from langchain.chains.openai_functions import create_structured_output_chain
from langchain.chat_models import ChatOpenAI
from langchain.document_loaders import WikipediaLoader, PyPDFLoader, TextLoader
from langchain.docstore.document import Document
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.graphs import Neo4jGraph
from langchain.prompts import ChatPromptTemplate
from langchain.pydantic_v1 import BaseModel, Field
from langchain.text_splitter import TokenTextSplitter, CharacterTextSplitter
from neo4j.exceptions import ClientError
import os
graph = Neo4jGraph()
# Load Wikipedia Data
all_data = WikipediaLoader(query="Removal_of_Sam_Altman_from_OpenAI").load()
# Embeddings & LLM models
embeddings = OpenAIEmbeddings()
embedding_dimension = 1536
llm = ChatOpenAI(temperature=0)
# Process All Data
parent_splitter = TokenTextSplitter(chunk_size=512, chunk_overlap=24)
child_splitter = TokenTextSplitter(chunk_size=100, chunk_overlap=24)
# Ingest Parent-Child node pairs
for document in all_data:
parent_documents = parent_splitter.split_documents([document])
for i, parent in enumerate(parent_documents):
child_documents = child_splitter.split_documents([parent])
params = {
"parent_text": parent.page_content,
"parent_id": i,
"parent_embedding": embeddings.embed_query(parent.page_content),
"children": [
{
"text": c.page_content,
"id": f"{i}-{ic}",
"embedding": embeddings.embed_query(c.page_content),
}
for ic, c in enumerate(child_documents)
],
}
# Ingest data
graph.query(
"""
MERGE (p:Parent {id: $parent_id})
SET p.text = $parent_text
WITH p
CALL db.create.setVectorProperty(p, 'embedding', $parent_embedding)
YIELD node
WITH p
UNWIND $children AS child
MERGE (c:Child {id: child.id})
SET c.text = child.text
MERGE (c)<-[:HAS_CHILD]-(p)
WITH c, child
CALL db.create.setVectorProperty(c, 'embedding', child.embedding)
YIELD node
RETURN count(*)
""",
params,
)
# Create vector index for child
try:
graph.query(
"CALL db.index.vector.createNodeIndex('parent_document', "
"'Child', 'embedding', $dimension, 'cosine')",
{"dimension": embedding_dimension},
)
except ClientError: # already exists
pass
# Create vector index for parents
try:
graph.query(
"CALL db.index.vector.createNodeIndex('typical_rag', "
"'Parent', 'embedding', $dimension, 'cosine')",
{"dimension": embedding_dimension},
)
except ClientError: # already exists
pass
# Ingest hypothethical questions
class Questions(BaseModel):
"""Generating hypothetical questions about text."""
questions: List[str] = Field(
...,
description=(
"Generated hypothetical questions based on " "the information from the text"
),
)
questions_prompt = ChatPromptTemplate.from_messages(
[
(
"system",
(
"You are generating hypothetical questions based on the information "
"found in the text. Make sure to provide full context in the generated "
"questions."
),
),
(
"human",
(
"Use the given format to generate hypothetical questions from the "
"following input: {input}"
),
),
]
)
question_chain = create_structured_output_chain(Questions, llm, questions_prompt)
for i, parent in enumerate(parent_documents):
questions = question_chain.run(parent.page_content).questions
params = {
"parent_id": i,
"questions": [
{"text": q, "id": f"{i}-{iq}", "embedding": embeddings.embed_query(q)}
for iq, q in enumerate(questions)
if q
],
}
graph.query(
"""
MERGE (p:Parent {id: $parent_id})
WITH p
UNWIND $questions AS question
CREATE (q:Question {id: question.id})
SET q.text = question.text
MERGE (q)<-[:HAS_QUESTION]-(p)
WITH q, question
CALL db.create.setVectorProperty(q, 'embedding', question.embedding)
YIELD node
RETURN count(*)
""",
params,
)
# Create vector index
try:
graph.query(
"CALL db.index.vector.createNodeIndex('hypothetical_questions', "
"'Question', 'embedding', $dimension, 'cosine')",
{"dimension": embedding_dimension},
)
except ClientError: # already exists
pass
# Ingest summaries
summary_prompt = ChatPromptTemplate.from_messages(
[
(
"system",
(
"You are generating concise and accurate summaries based on the "
"information found in the text."
),
),
(
"human",
("Generate a summary of the following input: {question}\n" "Summary:"),
),
]
)
summary_chain = summary_prompt | llm
for i, parent in enumerate(parent_documents):
summary = summary_chain.invoke({"question": parent.page_content}).content
params = {
"parent_id": i,
"summary": summary,
"embedding": embeddings.embed_query(summary),
}
graph.query(
"""
MERGE (p:Parent {id: $parent_id})
MERGE (p)-[:HAS_SUMMARY]->(s:Summary)
SET s.text = $summary
WITH s
CALL db.create.setVectorProperty(s, 'embedding', $embedding)
YIELD node
RETURN count(*)
""",
params,
)
# Create vector index
try:
graph.query(
"CALL db.index.vector.createNodeIndex('summary', "
"'Summary', 'embedding', $dimension, 'cosine')",
{"dimension": embedding_dimension},
)
except ClientError: # already exists
pass