-
Notifications
You must be signed in to change notification settings - Fork 232
/
Copy pathdummy_config.yaml
96 lines (85 loc) · 3.32 KB
/
dummy_config.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
algorithm:
class_name: PPO
# training parameters
# -- value function
value_loss_coef: 1.0
clip_param: 0.2
use_clipped_value_loss: true
# -- surrogate loss
desired_kl: 0.01
entropy_coef: 0.01
gamma: 0.99
lam: 0.95
max_grad_norm: 1.0
# -- training
learning_rate: 0.001
num_learning_epochs: 5
num_mini_batches: 4 # mini batch size = num_envs * num_steps / num_mini_batches
schedule: adaptive # adaptive, fixed
# -- Random Network Distillation
rnd_cfg:
weight: 0.0 # initial weight of the RND reward
# note: This is a dictionary with a required key called "mode" which can be one of "constant" or "step".
# - If "constant", then the weight is constant.
# - If "step", then the weight is updated using the step scheduler. The dictionary should contain additional parameters:
# - max_num_steps: maximum number of steps to update the weight
# - final_value: final value of the weight
# If None, then no scheduler is used.
weight_schedule: null
reward_normalization: false # whether to normalize RND reward
gate_normalization: true # whether to normalize RND gate observations
# -- Learning parameters
learning_rate: 0.001 # learning rate for RND
# -- Network parameters
# note: if -1, then the network will use dimensions of the observation
num_outputs: 1 # number of outputs of RND network
predictor_hidden_dims: [-1] # hidden dimensions of predictor network
target_hidden_dims: [-1] # hidden dimensions of target network
# -- Symmetry Augmentation
symmetry_cfg:
use_data_augmentation: true # this adds symmetric trajectories to the batch
use_mirror_loss: false # this adds symmetry loss term to the loss function
# string containing the module and function name to import.
# Example: "legged_gym.envs.locomotion.anymal_c.symmetry:get_symmetric_states"
#
# .. code-block:: python
#
# @torch.no_grad()
# def get_symmetric_states(
# obs: Optional[torch.Tensor] = None, actions: Optional[torch.Tensor] = None, cfg: "BaseEnvCfg" = None, is_critic: bool = False,
# ) -> Tuple[torch.Tensor, torch.Tensor]:
#
data_augmentation_func: null
# coefficient for symmetry loss term
# if 0, then no symmetry loss is used
mirror_loss_coeff: 0.0
policy:
class_name: ActorCritic
# for MLP i.e. `ActorCritic`
activation: elu
actor_hidden_dims: [128, 128, 128]
critic_hidden_dims: [128, 128, 128]
init_noise_std: 1.0
# only needed for `ActorCriticRecurrent`
# rnn_type: 'lstm'
# rnn_hidden_size: 512
# rnn_num_layers: 1
runner:
num_steps_per_env: 24 # number of steps per environment per iteration
max_iterations: 1500 # number of policy updates
empirical_normalization: false
# -- logging parameters
save_interval: 50 # check for potential saves every `save_interval` iterations
experiment_name: walking_experiment
run_name: ""
# -- logging writer
logger: tensorboard # tensorboard, neptune, wandb
neptune_project: legged_gym
wandb_project: legged_gym
# -- load and resuming
resume: false
load_run: -1 # -1 means load latest run
resume_path: null # updated from load_run and checkpoint
checkpoint: -1 # -1 means load latest checkpoint
runner_class_name: OnPolicyRunner
seed: 1